Category Archives: literature

#TeachingTuesday: Student feedback and how to interpret it in order to improve teaching

Student feedback has become a fixture in higher education. But even though it is important to hear student voices when evaluating teaching and thinking of ways to improve it, students aren’t perfect judges of what type of teaching leads to the most learning, so their feedback should not be taken onboard without critical reflection. In fact, there are many studies that investigate specific biases that show up in student evaluations of teaching. So in order to use student feedback to improve teaching (both on the individual level when we consider changing aspects of our classes based on student feedback, as well as at an institutional level when evaluating teachers for personnel decisions), we need to be aware of the biases that student evaluations of teaching come with.

While student satisfaction may contribute to teaching effectiveness, it is not itself teaching effectiveness. Students may be satisfied or dissatisfied with courses for reasons unrelated to learning outcomes – and not in the instructor’s control (e.g., the instructor’s gender).
Boring et al. (2016)

What student evaluations of teaching tell us

In the following, I am not presenting a coherent theory (and if you know of one please point me to it!), these are snippets of current literature on student evaluations of teaching, many of which I found referenced in this annotated literature review on student evaluations of teaching by Eva (2018). The aim of my blogpost is not to provide a comprehensive literature review, rather than pointing out that there is a huge body of literature that teachers and higher ed administrators should know exists somewhere out there, that they can draw upon when in doubt (and ideally even when not in doubt ;-)).

6 second videos are enough to predict teacher evaluations

This is quite scary, so I thought it made sense to start out with this study. Ambady and Rosenthal (1993) found that silent videos shorter than 30 seconds, in some case as short as 6 seconds, significantly predicted global end-of-semester student evaluations of teachers. These are videos that do not even include a sound track. Let this sink in…

Student responses to questions of “effectiveness” do not measure teaching effectiveness

And let’s get this out of the way right away: When students are asked to judge teaching effectiveness, that answer does not measure actual teaching effectiveness.

Stark and Freishtat (2014) give “an evaluation of course evaluations”. They conclude that student evaluations of teaching, though providing valuable information about students’ experiences, do not measure teaching effictiveness. Instead, ratings are even negatively associated with direct measures of teaching effectiveness and are influenced by gender, ethnicity and attractiveness of the instructor.

Uttl et al. (2017) conducted a meta-analysis of faculty’s teaching effectiveness and found that “student evaluation of teaching ratings and student learning are not related”. They state that “institutions focused on student learning and career success may want to abandon [student evaluation of teaching] ratings as a measure of faculty’s teaching effectiveness”.

Students have their own ideas of what constitutes good teaching

Nasser-Abu Alhija (2017) showed that out of five dimensions of teaching (goals to be achieved, long-term student development, teaching methods and characteristics, relationships with students, and assessment), students viewed the assessment dimension as most important and the long-term student development dimension as least important. To students, the grades that instructors assigned and the methods they used to do this were the main aspects in judging good teaching and good instructors. Which is fair enough — after all, good grades help students in the short term — but that’s also not what we usually think of when we think of “good teaching”.

Students learn less from teachers they rate highly

Kornell and Hausman (2016) review recent studies and report that when learning is measured at the end of the respective course, the “best” teachers got the highest ratings, i.e. the ones where the students felt that they had learned the most (which is congruent with Nasser-Abu Alhija (2017)’s findings of what students value in teaching). But when learning was measured during later courses, i.e. when meaningful deep learning was considered, other teachers seem to have more effective. Introducing desirable difficulties is thus good for learning, but bad for student ratings.

Appearances can be deceiving

Carpenter et al. (2013) compared a fluent video (instructor standing upright, maintaining eye contact, speaking fluidly without notes) and a disfluent video (instructor slumping, looking away, speaking haltingly with notes). They found that even though the amount of learning that took place when students watched either of the videos wasn’t influenced by the lecturer’s fluency or lack thereof, the disfluent lecturer was rated lower than the fluent lecturer.

The authors note that “Although fluency did not significantly affect test performance in the present study, it is possible that fluent presentations usually accompany high-quality content. Furthermore, disfluent presentations might indirectly impair learning by encouraging mind wandering, reduced class attendance, and a decrease in the perceived importance of the topic.”

Student expect more support from their female professors

When students rate teachers effectiveness, they do that based on their assumption of how effective a teacher should be, and it turns out that they have different expectations depending on the gender of their teachers. El-Alayi et al. (2018) found that “female professors experience more work demands and special favour requests, particularly from academically entitled students”. This was both true when male and female faculty reported on their experiences, as well as when students were asked what their expectations of fictional male and female teachers were. 

Student teaching evaluations punish female teachers

Boring (2017) found that even when learning outcomes were the same for students in courses taught by male and female teachers, female teachers received worse ratings than male teachers. This got even worse when teachers didn’t act in accordance to the stereotypes associated with their gender.

MacNell et al. (2015) found that believing that an instructor was female (in a study of online teaching where male and female names were sometimes assigned according to the actual gender of the teacher and sometimes not) was sufficient to rate that person lower than an instructor that was believed (correctly or not) to be male.

White male students challenge women of color’s authority, teaching competency, and scholarly expertise, as well as offering subtle and not so subtle threats to their persons and their careers

This title was drawn from the abstract of Pittman (2010)’s article that I unfortunately didn’t have access to, but thought an important enough point to include anyway.

There are very many more studies on race, and especially women of color, in teaching contexts, which all show that they are facing a really unfair uphill battle.

Students will punish a percieved accent

Rubin and Smith (1990) investigated “effects of accent, ethnicity, and lecture topic on undergraduates’ perceptions of nonnative English-speaking teaching assistants” in North America and found that 40% of undergraduates avoid classes instructed by nonnative English-speaking teaching assistants, even though the actual accentedness of teaching assistants did not actually influence student learning outcomes. Nevertheless, students judged teaching assistants they perceived as speaking with a strong accent as poorer teachers.

Similarly, Sanchez and Khan (2016) found that “presence of an instructor accent […] does not impact learning, but does cause learners to rate the instructor as less effective”.

Student will rate minorities differently

Ewing et al. (2003) report that lecturers that were identified as gay or lesbian received lower teaching ratings than other lecturers with undisclosed sexual orientation when they, according to other measures, were perfoming very well. Poor teaching performance was, however, rated more positively, possibly to avoid discriminating against openly gay or lesbian lecturers.

Students will punish age

Stonebraker and Stone (2015) find that “age does affect teaching effectiveness, at least as perceived by students. Age has a negative impact on student ratings of faculty members that is robust across genders, groups of academic disciplines and types of institutions”. Apparently, when it comes to students, from your mid-40ies on, you aren’t an effective teacher any more (unless you are still “hot” and “easy”).

Student evaluations are sensitive to student’s gender and grade expectation

Boring et al. (2016) find that “[student evaluation of teaching] are more sensitive to students’ gender bias and grade expectations than they are to teaching effectiveness.

What can we learn from student evaluations then?

Pay attention to student comments but understand their limitations. Students typically are not well situated to evaluate pedagogy.
Stark and Freishtat (2014)

Does all of the above mean that student evaluations are biased in so many ways that we can’t actually learn anything from them? I do think that there are things that should not be done on the basis of student evaluations (e.g. rank teacher performance), and I do think that most times, student evaluations of teaching should be taken with a pinch of salt. But there are still ways in which the information gathered is useful.

Even though student satisfaction is not the same as teaching effectiveness, it might still be desirable to know how satisfied students are with specific aspects of a course. And especially open formats like for example the “continue, start, stop” method are great for gaining a new perspective on the classes we teach and potentially gaining fresh ideas of how to change things up.

Also tracking ones own evaluation over time is helpful since — apart from aging — other changes are hopefully intentional and can thus tell us something about our own development, at least assuming that different student cohorts evaluate teaching performance in a similar way. Also getting student feedback at a later date might be helpful, sometimes students only realize later which teachers they learnt from the most or what methods were actually helpful rather than just annoying.

A measure that doesn’t come directly from student evaluations of teaching but that I find very important to track is student success in later courses. Especially when that isn’t measured in a single grade, but when instructors come together and discuss how students are doing in tasks that build on previous courses. Having a well-designed curriculum and a very good idea of what ideas translate from one class to the next is obviously very important.

It is also important to keep in mind that, as Stark and Freishtat (2014) point out, statistical methods are only valid if there are enough responses to actually do statistics on them. So don’t take very few horrible comments to heart and ignore the whole bunch of people who are gushing about how awesome your teaching is!

P.S.: If you are an administrator or on an evaluation committee and would like to use student evaluations of teaching, the article by Linse (2017) might be helpful. They give specific advice on how to use student evaluations both in decision making as well as when talking to the teachers whose evaluations ended up on your desk.

Literature:

Ambady, N., & Rosenthal, R. (1993). Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness. Journal of Personality and Social Psychology, 64(3), 431–441. https://doi.org/10.1037/0022-3514.64.3.431

Boring, A. (2017). Gender biases in student evaluations of teachers. Journal of Public Economics, 145(13), 27–41. https://doi.org/10.1016/j.jpubeco.2016.11.006

Boring, A., Dial, U. M. R., Ottoboni, K., & Stark, P. B. (2016). Student evaluations of teaching (mostly) do not measure teaching effectiveness. ScienceOpen Research, (January), 1–36. https://doi.org/10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1

Carpenter, S. K., Wilford, M. M., Kornell, N., & Mullaney, K. M. (2013). Appearances can be deceiving: Instructor fluency increases perceptions of learning without increasing actual learning. Psychonomic Bulletin & Review, 20(6), 1350–1356. https://doi.org/10.3758/s13423-013-0442-z

El-Alayi, A., Hansen-Brown, A. A., & Ceynar, M. (2018). Dancing backward in high heels: Female professors experience more work demands and special favour requests, particularly from academically entitled students. Sex Roles. https://doi.org/10.1007/s11199-017-0872-6

Eva, N. (2018), Annotated literature review: student evaluations of teaching (SET), https://hdl.handle.net/10133/5089

Ewing, V. L., Stukas, A. A. J., & Sheehan, E. P. (2003). Student prejudice against gay male and lesbian lecturers. Journal of Social Psychology, 143(5), 569–579. http://web.csulb.edu/~djorgens/ewing.pdf

Kornell, N. & Hausman, H. (2016). Do the Best Teachers Get the Best Ratings? Front. Psychol. 7:570. https://doi.org/10.3389/fpsyg.2016.00570

Linse, A. R. (2017). Interpreting and using student ratings data: Guidance for faculty serving as administrators and on evaluation committees. Studies in Educational Evaluation, 54, 94- 106. https://doi.org/10.1016/j.stueduc.2016.12.004

MacNell, L., Driscoll, A., & Hunt, A. N. (2015). What’s in a name: Exposing gender bias in student ratings of teaching. Innovative Higher Education, 40(4), 291– 303. https://doi.org/10.1007/s10755-014-9313-4

Nasser-Abu Alhija, F. (2017). Teaching in higher education: Good teaching through students’ lens. Studies in Educational Evaluation, 54, 4-12. https://doi.org/10.1016/j.stueduc.2016.10.006

Pittman, C. T. (2010). Race and Gender Oppression in the Classroom: The Experiences of Women Faculty of Color with White Male Students. Teaching Sociology, 38(3), 183–196. https://doi.org/10.1177/0092055X10370120

Rubin, D. L., & Smith, K. A. (1990). Effects of accent, ethnicity, and lecture topic on undergraduates’ perceptions of nonnative English-speaking teaching assistants. International Journal of Intercultural Relations, 14, 337–353. https://doi.org/10.1016/0147-1767(90)90019-S

Sanchez, C. A., & Khan, S. (2016). Instructor accents in online education and their effect on learning and attitudes. Journal of Computer Assisted Learning, 32, 494–502. https://doi.org/10.1111/jcal.12149

Stark, P. B., & Freishtat, R. (2014). An Evaluation of Course Evaluations. ScienceOpen, 1–26. https://doi.org/10.14293/S2199-1006.1.SOR-EDU.AOFRQA.v1

Stonebraker, R. J., & Stone, G. S. (2015). Too old to teach? The effect of age on college and university professors. Research in Higher Education, 56(8), 793–812. https://doi.org/10.1007/s11162-015-9374-y

Uttl, B., White, C. A., & Gonzalez, D. W. (2017). Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Studies in Educational Evaluation, 54, 22-42. http://dx.doi.org/10.1016/j.stueduc.2016.08.007

#TeachingTuesday: Some things I read about making good lecture videos

Just imagine you had written an article on “Student Satisfaction and Learning Outcomes in Asynchronous Online Lecture Videos”, like Choe et al. (2019) did. What excellent timing to inform teaching decisions all around the world!

Choe et al. compare 8 different video styles (all of which can be watched as supplementary material to the article which is really helpful!), 6 to replace “normal lectures” and two that complement them, to investigate the influence of video style on both how much students are learning from each, and how they feel watching them.

The “normal lecure” videos were different combinations of the lecturer and information on slides/blackboards/tablets/…: a “classic classroom” where the lecturer is filmed in front of a blackboard and a screen, a “weatherman” style in front of a green screen on which the lecture slides are later imposed, a “learning glass” where the lecturer is seen writing on a board, a “pen tablet” where the lecturer can draw on the slides, a “talking head” where the lecturer is superimposed on the slides in a little window, and “slides on/off” where the video switches between showing slides or the lecturer.

And the good news: Turns out that the style you choose for your recorded video lecture doesn’t really affect student learning outcomes very much. Choe et al. did, however, deduce strengths and weaknesses of each of the lecture formats, and from that come up with a list of best practices for student engagement, which I find very helpful. Therein, they give tips for different stages of the video production, related to the roles (lecturer and director of the video), and content covered in the videos, and these are really down-to-earth, practical tips like “cooler temperatures improve speaker comfort”.  And of course all the things like “not too much text on slides” and “readable font” are mentioned, too; always a good reminder!

One thing they point out that I wasn’t so clear to me before is that it’s important that the lecturer is visible and that they maintain eye contact with the camera. Of course that adds a layer of difficulty to recording lectures — and a lot of awkward feelings and extra work in terms of what to wear and actually having to shower and stuff — but in the big scheme of things if it creates a better user experience, maybe it’s not such a big sacrifice. Going forward, I’ll definitely keep that in mind!

Especially making the distinction between the roles of “lecturer” and “director” was a really helpful way for me to think about making videos, even though I am playing both roles myself. But it reminds me of how many considerations (should) go into a video besides “just” giving the lecture! If you look at the picture above, you’ll see that I’ve started sketching out what I want to be able to show on a future video, and what that means for how many cameras I need, where to place them, and how to orient them (portrait or landscape). When I made the (german) instructions for kitchen oceanography, I filmed myself in portrait mode, thinking of posting them to my Instagram stories, but then ended up editing a landscape video for which I then needed to fill all the awkward space around the portrait movie. Would have been helpful to think about it in these terms before!

Choe et al. even include a “best practice” video in their supplementary material, which I find super helpful. Because even though in some cases it might be feasible to professionally produce lectures in a studio, but that’s not what I (or most people frantically producing video lectures) these days have access to. So seeing something that is professionally produced but that doesn’t (seem) to require incredibly complicated technology or fancy editing is reassuring. In fact, even though the lecturer appears to have been filmed in front of a green screen, I think in the end it’s not too unsimilar to what I did in the (german) instructions for kitchen oceanography mentioned above: A lecturer on one side, the slides (in a portrait format) on the other.

In addition to the six “lecture” videos, there was a “demo” video where the lecturer showed a simple demonstration, and an “interview” video, where the lecturer was answering questions that were shown on a screen (so no second person there). Those obviously can’t replace a traditional lecture, but can be very useful for specific learning outcomes!

The “demo” type video is the one I am currently most interested in, since that’s where I can best contribute my expertise in a niche where other people appreciate getting some input. Also, according to Choe at al., students found that type of video engaging, entertaining, and of high learning value. All the more reason for me to do a couple more demo videos over the next couple of days, I’m already on it!

References:

Ronny C. Choe, Zorica Scuric, Ethan Eshkol, Sean Cruser, Ava Arndt, Robert Cox, Shannon P. Toma, Casey Shapiro, Marc Levis-Fitzgerald, Greg Barnes, and H. Crosbie (2019). “Student Satisfaction and Learning Outcomes in Asynchronous Online Lecture Videos”, CBE—Life Sciences Education, Vol. 18, No. 4. Published Online: 1 Nov 2019
https://doi.org/10.1187/cbe.18-08-0171

Anna is answering questions on our Nature article at #ShareEGU20

It feels like an enourmously long time ago that our article on “ice front blocking of ocean heat transport to an Antarctic ice shelf” got published in Nature, but it was in fact only a little more than two months ago. Only right after, life changed so drastically that it feels as if it’s been decades since…

But anyway, here is your chance to ask any and all questions related to that article that you might have! At #shareEGU20, EGU’s “sharing geosciences online” event, anyone can log onto their system and ask main author of the article, Anna Wåhlin, all they ever wanted to know! How cool is that?

Using campsites for scicomm

Last summer at the Science in Public conference in Manchester, I heard a talk by Anna Woolman on science communication in campsites. It stuck with me as a really good idea. Now I came across the recent article by Woolman (2020) on that study that I found so inspiring, so here are my thoughts on it for you!

Reaching non-specialist audiences and engaging them with science at an affordable seaside campsite

The idea behind the study is that while science days and science festival and those kinds of events are great opportunities for the interested public to engage with cutting edge research or other interesting science, the problem is that it will only engage the interested public. As long as people have to choose to specifically enter a space (whether physically or on the internet) where scicomm happens, doing so actually needs to be made a priority. A priority in how time and money are spent, and in competition with many other things that might be a lot more important to people. So how can people be reached without relying on them to make the effort to enter in a scicomm space?

In this study, the scicomm topic was “insects as a sustainable food source”. The way they did it was a pop up kitchen in the middle of a campsite where they offered a menu made from insects as well as information and conversations on that topic. And here is what they recommend:

Affordable campsites

In the study, an affordable campside near the seaside was chosen in order to reach audiences who might not make an active effort to engage with science otherwise. The assumption that those audiences are more likely to be found on affordable, local campsites than in high-end holiday ressorts is grounded in literature.

(Also, a campsite can provide infrastructure that will make your experience as scicommer a lot more enjoyable. Parking spots, toilets, food, all within easy reach…)

People have time

In the study, Woolman found that since people were on vacation and had time, engagement wasn’t just the sadly too common “grab and go” of scicomm giveaways, but that extended engagement (longer than 10 minutes) could easily take place. This is important because other scicomm activities that take place in spaces where people just happen to be are often in very busy places like shopping malls or even train stations, where there is a lot of people going through, but where engagement is made difficult because people are there for a specific purpose which they want to get done and then go some place else. At a campsite, on the other hand, people have a lot of time on their hands and are often grateful for some kind of unexpected stimulation or the opportunity to have the kids kept busy for a couple of minutes.

School holidays or a weekend in November?

Depending on who your target audience is and what type of engagement you are going for, it might  be a good idea to do your scicomm activity during the busy times. For example during the summer school holidays, camsites are typically most busy, with all sorts of people. If you were to target families with school-aged kids, for example, this would be the time to do your activity! But of course it’s also possible that your target audience are pensioneers — then maybe choosing a weekend or even week day outside of the school holidays might be a better idea! It might not be as busy in total numbers, but the density of your target audience might be relatively higher.

So what now?

I really like the idea of doing pop up scicomm at campsites. At my friend Sara‘s windsurfing school, this was happening when both she and other Kiel Science Outreach Campus (KiSOC; I was the project’s scientific coordinator at that time) PhD students did scicomm on their projects on the beach (in the picture you see a 3D movie on water striders being test-watched). Another project was related to sunscreen — very appropriate to do this on the beach! And from that experience doing scicomm specifically at that place, but more generally in a similar setting was something I wanted to do more of, and that I’ve been thinking about for two reasons.

#WaveWatching

As you know, my pet project is wave watching. And what better place to do it than on a beach? And that beach specifically is great because it offers a variety of features that influence a wave field (Check out a short wave watching movie from that beach here), plus I enjoy hanging out there (which I think is a really important factor when planning a scicomm activity — it needs to be enjoyable! If it’s not, that will show and put people off your science, no matter how awesome it might be).

I’ve been thinking about offering wave watching excursions there and actually had some scheduled this spring and summer, where I would meet up with people, walk to different spots on the beach, and explain what physics they can observe there. Well, there is always next year, or my wave watching Instagram @fascinocean_kiel :-)

GEO-Tag der Natur

I’m the programme manager of the german “GEO-Tag der Natur” festival on biodiversity. As part of my job I’ve been thinking about engaging different audiences through new formats, and this seems like a great idea. For GEO-Tag der Natur, there are typically excursions into interesting biotopes where experts on that type of biotope explain animals and plants that can be found there. Usually we advertise excursions in spots that are especially interesting in terms of biodiversity, but even just a regular beach, forest, or nature around wherever the campsite is located are super interesting and there is so much to discover anywhere! So using campsites as home bases for our excursions is definitely something that I want to try when it’s possible again. It’s also an attractive idea for the campsites themselves to be able to offer these kinds of events, so it’s a win-win!

What are your thoughts on doing scicomm on a campsite? Let me know!

References:

Woolman, A. (2020) ‘Reaching non-specialist audiences and engaging them with science at an affordable seaside campsite’. Research for All, 4 (1): 6–15. DOI https://doi.org/10.18546/RFA.04.1.02

Our Nature article in 20 tweets

(Not true, there were 22 tweets, but apparently I can’t count! :-D)

For those of you that don’t follow my Twitter, here is what I posted over there the day our Nature paper got published:

Published online in @Nature today: “Ice front blocking of ocean heat transport to an Antarctic ice shelf” by @a_wahlin @nadsteiger @dareliuselin @telemargrete @meermini (Yes! That’s me!!! :-)) @ClnHz @ak_mazur et al.. What is it all about? A thread. 1/x

And here is the link to our Nature article!

The Antarctic ice sheet has been losing mass recently. Ice sheets consist of the “grounded” parts that rest on land or sea floor, and the parts that float on the sea. If the floating part get thinner, the grounded part “flows off” land much more easily (pic by @dareliuselin) 2/x

Floating parts of ice shelves break off&melt. But why are ice sheets thinning? Mainly because of melting from below. We are thus concerned with what controls how much warm(-ish) water is transported across the Antarctic continental shelf towards the ice (Sketch: Kjersti Daae) 3/x

I’m writing “Warm(-ish) water”, because the water is only 1-2°C “warm”, but that’s still warmer than the freezing point. IF this warm(ish) water gets in contact with ice, it will nibble away at it. But that’s a big IF, that we set out to investigate 4/x

From existing data, it seemed that the shoreward heat flux is much larger than what would be needed to cause the observed melting. But this is a heat flux that was measured not right where the melting is happening, but a lot further offshore 5/x

It’s difficult to measure the heat flux right up to the ice shelf, because Antarctica isn’t the friendliest of environments for research ships, gliders, moorings, etc, especially in winter. Cool toys like floats, or CTDs on seals give a lot of data, but not enough yet 5/x

But @a_wahlin, @dareliuselin & team put moorings closer to the ice shelf than ever before, the closest one of three only 700m from the ice shelf front. There was absolutely no guarantee that the moorings would survive (Pic by @a_wahlin showing @dareliuselin) 6/x

Luckily, despite being threatened by storms, ice bergs etc, the moorings recorded for two years, right next to the ice shelf, giving us better estimates of heat fluxes than were available ever before 7/x

While the moorings were out in Antarctica, we went to LEGI in Grenoble and worked on the Coriolis rotating platform, basically a 13-m diameter swimming pool on a merry-go-round. SO EXCITING! (Pic by Nadine Steiger) 8/x

It’s really an amazing experience to sit in an office above a swimming pool when both are rotating together. As long as it’s dark outside the tent that covers both, you don’t really notice movement. But when the light comes on it’s very easy to get dizzy! (Pic Samuel Viboud) 9/x

We were not playing on the merry-go-round for two months just for fun, though. Rotating the large water tank is important to correctly represent the influence of Earth’s rotation on ocean currents, which is very important for this research question 10/x

In the rotating platform, we built a plastic “ice shelf” that was mounted at the end of a v-shaped plastic “canyon”. We could set up a current and then modify parameters to investigate their influence on the transport towards and underneath the ice shelf (Pic @a_wahlin) 11/x

If you are interested to read a lot more about this (also about how parts of the team went for a swim in the rotating tank, and about how sick you can get when sitting on a merry-go-round all day every day for weeks), check out @dareliuselin’s blog 12/x

Link to Elin’s blog!

In a nutshell: We put particles in the water and lit them, layer by layer, with lasers. We took pictures of where the particles in each layer were, and with the “particle image velocimetry” (PIV) technique, we got a 3D map of particle distributions over time 13/x

And what we found both from the data that we got from the moorings in Antarctica, that we were lucky enough to recover, as well as from the tank experiments at the rotating platform was really interesting: Ice front blocking of ocean heat transport to the Antarctic ice shelf14/x

The ice shelf, at its most offshore part, still reaches down to 250-500m. That means that the depth of the water column changes drastically at the front of the ice shelf. And that has important consequences for depth-independent part of the current 15/x

The barotropic, i.e. depth-independent part of the current is blocked by the step shape of the ice front (as well as the plastic front in the tank). Only the baroclinic (depth-varying) part can flow below the ice, but that part is much smaller 16/x

In the tank we changed the shape of the ice front to see that it’s really the large step that blocks the current. Other configurations lead to different flow pattern. But the large step shape is what the Getz Ice Shelf system looks like, and other systems, too 17/x

What that means is that looking at the density structure of the water column, thus the relative magnitude of barotropic and baroclinic components of the current, is a better indicator of ice shelf melting than the heat transport onto the continental shelf 18/x

It also shows the importance of accurately representing the step of the ice shelf front accurately in models in order to simulate the heat transport towards the ice as well as the melting of the ice shelves 19/x

TL;DR: Article published @Nature on ice front blocking of ocean heat transport to an Antarctic ice shelf, and I contributed to the exciting study and feel so honored to have been part of this amazing project with @a_wahlin, @dareliuselin, @clnhz et al. (Pic Samuel Viboud) 20/x

Playing in a 13-m-diameter pool on a merry-go-round results in Nature article

A long, long time ago (ok, in fall of 2017) I got the chance to join Elin Darelius and Anna Wåhlin’s team for a measuring campaign at the Coriolis platform in Grenoble for several weeks. I was there officially in an outreach officer-like role: To write and tweet about the experiments, conduct “ask me anything” events, write guest posts newsletters and websites, etc.. A lot of my work from that time is documented on Elin’s blog, that I blogged on almost daily during those periods. And we had so many amazing pictures to share (mostly green, that’s because of the lasers we used).

Turbulence in a rotating system is 2D, therefore the whole water column is rotating in this eddy that we accidentally made when moving parts of the structure in the tank

But I was extremely lucky: Neither Elin nor Anna nor anyone else on the team saw me as “just the outreach person”, which is a role that outreach people are sadly sometimes pushed in. Instead, they knew me as an oceanographer and that’s how I was integrated in the team: We discussed experiments all the way from the setup in an empty tank (below you see Elin with her “Antarctica”)

No matter how carefully you planned your experiments, once you start actually conducting them, there is always something that doesn’t work quite the way you imagined. But since time in facilities like the Coriolis platform is limited, it is hugely important to think on your feet, come up with ideas quickly, and fix things. Which is the part of science that I enjoy the most: Being confronted with a problem “in the field” and having to fix it right then and there, using whatever limited equipment and information you have available.

Speaking of “limited information”: Sometimes you have to make educated guesses about what’s in the data you are currently collecting in order to make decisions on how to proceed, without being able to know for sure what’s in the data. We took tons of pictures and videos and obviously also observed by eye what was happening in the tank, but in the end, the “real” data collection was happening with images that we couldn’t analyse on the spot (and that’s what the research part is about that took place in between fall of 2017 and now: many many hours of computing and analysing and discussing and rinse and repeat).

Grenoble was also an amazing experience just because of the sheer size of the Coriolis platform. Below you see the operations room, an office that is built above the tank and rotates with it. And let me tell you, being on a merry-go-round all day long isn’t for everybody!

I really also enjoy the hands-on work. Below is me in waders in the 13-m-diameter rotating pool (while it’s rotating, of course), using a broom to sweep up “neutrally buoyant” particles that we use to track the flow that over night settled on the topography (so much for “neutrally buoyant”, but close enough). Sometimes it comes in handy to be an early bird and doing this work before everybody else gets up, so the tank has the chance to settle into solid body rotation again before experiments start for the day.

Here you see the layer of particles in different stages of disturbance, and me having fun with it (it might not be obvious from the picture, but I’m standing in waist-deep water there)

But then we weren’t playing all day long for weeks. There were times of intense discussions of preliminary results. Exciting times! And of course, those discussions only intensified when all the data was in and could be analysed in more depth.

I loved being part of the whole process and contributing to this exciting publication now!

#SciCommSunday: The reason why I choose to post selfies on my #SciComm Social Media

“I don’t want my face on the internet!”, “My science should speak for itself, it shouldn’t matter who I am as a person!”, “I just don’t like what I look like in pictures!”, “People won’t perceive me as professional when I include selfies in my science communication work!”: There are many reasons for not posting selfies on the internet, and I sympathise with many of them. However, I have chosen (and continue to choose) to post the occasional selfie. Why is that?

My main goal I am trying to achieve with my scicomm Instagram @fascinocean_kiel is to show that exciting science (specifically ocean physics) can be discovered EVERYWHERE if you are open to seeing it. This means that I post pictures of water that I take on walks along any kind of river, lake, ocean, but also in puddles, sinks, or tea cups, pretty much daily.

#ThisIsWhatAScientistLooksLike

But in order to make my Insta relatable to other people, I find it important to put these pictures in the context of my life. Yes, I live on the Baltic Sea coast and therefore have the opportunity to see “the ocean” (well, kinda) on an almost daily basis, which is reflected in my Insta. But I commute to work in Hamburg (where I see Elbe river and the Port of Hamburg, which you also see quite a lot), and I travel a lot throughout Germany and beyond. Some days I’m on the train — on those days you’ll often see pictures of water taken from the train window. Or if I am giving workshops in locations with fancy taps, you will see those. My point is: You can discover oceanography everywhere. If you choose to look for it.

But then who does get this excited about this kind of stuff? Well, I do. And this is where #ThisIsWhatAScientistLooksLike comes in. I’m not wearing a lab coat, and I am not even observing this science as part of my job. I’m not even employed as a scientist any more, nor do I want to be. But I didn’t loose my identity as a scientist when I decided to stop pursuing an academic career. That was a huge fear I had when I was in the process of wanting out of academia — that I would be a failed scientist if I left, even if I left because I would rather be somewhere else. So for me, showing that I am still a scientist even if that’s not my day job anymore is my way of offering myself as the role model that I wish I had during that time, showing that leaving academia doesn’t make you any less of a scientist.

Of course, #ThisIsWhatAScientistLooksLike also includes other aspects, for example making women or other minorities in science more visible. Or showing that there is no one “correct” way of being a scientist. For example the clothes you wear or how much effort you put into looking put together are in no way correlated to how serious you are about your science. Contributing to spreading that message is a nice side effect for me.

But does posting selfies do anything to how people perceive scientists?

#ScientistsWhoSelfie

There is a 2019 study by Jarreau et al. that looked at this. They compared different kinds of Instagram posts, some showing selfies of scientists, some showing only lab equipment or other pictures of the work only. And they found that posting selfies does actually have an impact on how scientists are perceived.

Scientists posting selfies (as opposed to those only posting “work stuff”) were perceived as significantly warmer. Appearing warm is definitely desirable in this context, as warmth is a component of trustworthiness. Obviously, as a scientist we want to be, but also be perceived as, trustworthy. This perception is created in this study when selfies were used.

Another finding is that posting selfies does not result in scientists being perceived as less competent, both for male and female scientists. So here goes the fear mentioned above that posting selfies will make you appear less serious about your work! Or does it? Note that of course this study does not guarantee that nobody ever will think less of you because you are posting selfies. Of course there might be people you are working with, or more generally, that see your selfies online and think any number of weird things. In general, this does not appear to be the case. But you know your bosses, your community, your life best, so ultimately if this is a concern you have, you need to weigh the potential benefits of posting selfies against that risk. In my case, I have decided that I can totally live with what some people might think about me posting selfies because I know that the people who matter to me don’t think less of me because of it. Additionally, I have gotten a lot of feedback that people actually enjoy seeing selfies on my Insta occasionally, because it does make it more relatable.

As a women, I also find it important that I post selfies, because the study showed that this can contribute to making science be perceived less as “exclusively male”. The common stereotype of what a scientist looks like is still to this day an old white male (in a lab coat and with messy hair). Of course there are plenty of those around, but there are so many brilliant and inspiring women out there, too, that I’d like to see that stereotype change.

In total, results of the study are that showing selfies can potentially help change attitudes towards scientists towards the better. The study doesn’t explore the mechanisms through which this happens (so it might depend on, for example, facial expressions, features of the background, or tons of other things), so it is by no means guaranteed to work for every selfie being posted on the internet (and also how many selfies do people need to see for this effect to kick in, or what does the ratio to “science stuff only” pictures need to be? And how long does the effect last?). In any case, to me, this study is indication enough that me posting selfies might have all the intended consequences, and that’s reason enough for me to choose to post selfies. And I encourage you to check out the study and consider posting selfies, too!

P.S.: This picture is clearly not a selfie, it was taken by my brilliant colleague Sebi Berens (www.sebiberensphoto.com / @sebiberensphoto). Thank you, Sebi!

Literature:

Jarreau PB, Cancellare IA, Carmichael BJ, Porter L, Toker D, Yammine SZ (2019) Using selfies to challenge public stereotypes of scientists. PLoS ONE 14(5): e0216625. https://doi.org/10.1371/journal.pone.0216625

Fastest way to read up on the science of science communication? This book!

(Werbung ohne Auftrag // This blogpost is not sponsored)

I strongly believe that all scicomm efforts should be grounded in the science of science communication. That means reading a lot of original literature, or … reading this book that I recently found. It’s a quick and fun overview over the current understanding of what works and why: “The Science of Communicating Science — The Ultimate Guide” by Craig Cormick.

The Science of Communicating Science

The book is structured in four parts: “The ground rules”, “communication tools”, “when things get hard”, and “science communication issues”. It is a really easy and enjoyable read. It’s full of funny stories and cute sketches that illustrate key concepts, and despite it being pretty much a review of the relevant literature, it’s written in a conversational style. The author brings in a lot of stories that make his points. For example to stress the importance of story telling, he talks about how every last tired student woke up in a lecture once he paused his usual lecturing and said “let me tell you a story!”. Very relatable.

“The ground rules”

This part provides a lot of the background knowledge on scicomm. Why do we need to communicate science? What makes science communication good science communication? What is it that the public knows and believes about science, and how much do they care about science? And is there even such a thing as “the public”? (Spoiler alert: of course not!)

It for example tackles one of the big problems I see in science communication: People believing that they will change other people’s minds with more information (and, it’s quite interesting that in my experience, those people’s minds usually aren’t changed by all the data that contradicts them on that).

This part of the book should definitely be required reading for anyone doing scicomm.

“Communication tools”

In this part, the author deals with many different ways to communicate with audiences, and what is known about them — both the communication tools themselves and what audiences might be reached with which tool. For example for social media, it is important to understand who for example has internet access and who is actually using what channel for what purpose, in order to find the best way to reach your specific audience. Or for TED talks, turns out that the gestures and way you present yourself are super important for how you are being perceived so that it basically doesn’t matter to the ratings whether people watch you with sound on or off. How scary is this?

This part of the book is definitely interesting to browse for an overview over many different tools, and looking at chances and challenges of each. And if you are planning to use, or already using, any of the tools described there, it will be super helpful to look into what the author has to say about it.

“When things get hard”

Now we are getting into the really difficult issues, like for example beliefs. Why do people believe what they believe? And  how can we respectfully and constructively deal with people who hold beliefs different from ours? (How) can we change beliefs?

Or another example that I found really interesting because I hadn’t thought about it before, or at least not in those terms, was communicating risk. For risk communication, there are different strategies recommended for audiences that are defined depending on how much they are concerned about a specific risk on the one hand, and how much they are affected by that risk on the other. People in the low concern & low affected corner are an audience that can be communicated with in the way you would normally do scicomm. However, as soon as there is high concern or high risk, things change. For audiences that are highly concerned despite not being highly affected, listening is the key, both to make them feel understood as well as to understand what exactly their concerns are so that you can eventually help them see that despite the concerns they might not be as much as risk as they think they are. But then for people with low levels of concerns but high risk, a completely different approach is needed, one that educates people about the risks they are at. Lastly, people who are both highly concerned and highly at risk are the group that you need to engage with the most. And there are a lot of pointers for how to do that in the book, that I can’t all spill here ;-)

Another chapter in this part of the book that I found really interesting is on changing people’s behaviours. In a nutshell, you don’t change people’s behaviours by changing what they think they should be doing, you change behaviours first and that will lead to a change in attitudes towards the behaviour they are now employing. It’s all about cognitive dissonance and how we are trying to avoid a mismatch between what we say we want to do and what we actually do — usually by changing our attitudes, not our behaviours. So make it easy for people to behave in the way you want them to behave and their attitudes will follow (one of the reasons why I think taxing and fines as tools to influence behaviours should be used a lot more; attitudes will follow…).

This part of the book then concludes with chapters on “communicating controversies” (lots of helpful strategies for if/when you get caught in a shit storm!) and “debunking bunkum” about dealing with pseudoscience.

“Science communication issues”

I really loved this part of the book, because here issues get addressed that we don’t talk about enough, like ethics of scicomm. When we talk about “what works in scicomm”, in a way it’s fair to say that we are talking about ways of manipulating people. We do this with the best intentions, but still, we are basically employing and sharing techniques to make people believe what we believe and act in ways that we think are the right ones. And once in a while it’s good to stop and think about what exactly it is that we are doing there and if we want to adopt existing or develop new guidelines or a code of conduct.

Then there is a chapter on all the caveats of scicomm research. How valid is all the stuff that we think we know about how scicomm works? Very important read!

And lastly, the author ends with an appeal to scicomm researchers to make their findings accessible to practitioners, and for practitioners to dig around if there might already be research available on their formats and topics. To sum it up: “Go and do brilliant things”!

Post scriptum

In my old job in scicomm research, I had the time to read a lot of scientific articles as well as reports, blog posts, etc, and go to workshops, watch youtube, browse social media, etc, to inform myself about the cutting edge science and practice of scicomm. And that’s pretty much a full-time job. Now, with my current job, I still try to keep up to date, but I am really glad I have this foundation of two years full-time focus on scicomm research & practice to fall back on. So I am very much aware of how much there is to learn about scicomm, and how difficult it is to do when that isn’t your primary focus.

I received this book last year, two days before giving an introductory scicomm workshop, and binge-read it to make sure I wasn’t missing anything super important in my workshop. Turns out that the first part of this book, “the ground rules”, is a very good match with what I chose to include as a foundation for my workshop, citing many of the same articles and focusing on very similar topics. If you can’t spend a huge amount of time on diving into the science of scicomm (or attend one of my workshops, obviously ;-)), reading this book is really the best way to get started that I am aware of, and I highly highly recommend reading it! And even if you think you know all there is to know, it’s really refreshing to get a new perspective on things. Still go read the book! :-)

P.S.: A quick overview over the main message of the book (and including some of the fun sketches!) is also given here, by the author himself. So go check that out, too!

P.P.S.: Looking for more to read? Another book I liked a lot and recommended on here about a year ago (when it had just come out): Communicating Climate Change by Armstrong, Krasny & Schuldt.

Literature

“The Science of Communicating Science — The Ultimate Guide” by C. Cormick (2019).

Communicating Climate Change” by A. K. Armstrong, M. E. Krasny, J. P. Schuldt (2018).

Melting ice cubes experiment published in kids’ journal Frontiers Young Minds

On publishing in a journal peer-reviewed by kids, and suggesting it as a first journal new PhD students should be asked to write for

You guys might remember my favourite experiment with the ice cubes melting in freshwater and saltwater. This experiment can be used for almost any teaching purpose (Introduction to experimenting? Check! Thermohaline circulation? Check! Lab safety? Check! Scientific process? Check! And the list goes on and on…) and for any audience (necessary observation skills start a taking the time it takes ice cubes to melt in the easiest case, to observing the finest details of the melt). In short, I love this experiment!

A different format of science communication

After using it in all kinds of settings for years, I wrote up the experiment for Frontiers Young Minds, a journal which is written for, and peer-reviewed by, kids (link to my article). I love the idea of not only tailoring your science communication to the audience of young readers, but making sure that it actually works well for them by including them in the process. Additionally, the peer-reviewers get a great insight into how a publishing process (and thus an important step in science) works, too.

The whole peer-review and publication process was a really positive experience. Speciality chief editor for “Earth and its resources“, Mark Brandon, and the whole team were super responsive and helpful all the way from initial article idea until publication.

Writing for and being peer-reviewed by young readers

Having my writing peer-reviewed by the “young readers” was super interesting. For example, on one of my articles, they commented on how, as kids growing up in the US, they were not familiar with metric units and could I please give them units they could actually relate to? This is an issue I should probably have been aware of, but I totally wasn’t.

Another example from the other article: a different young reader commented that English was their second language, and could I replace difficult words like “puddle” and “dye” with easier words. As a non-native English speaker myself, this feedback was super helpful — I thought that I was writing in an easy language already, but clearly my perception of “easy language” has drifted into specialized vocabulary — super valuable feedback!

And then both teams reviewing both my articles had a science mentor helping them, and also commenting him/herself on the article and how the review process with the kids went and suggesting further edits, that would make it easier for kids to work with the article.

Illustration by Jessie Miller for Frontiers Young Minds, used with permission

And then, of course, there are Jessie Miller‘s super cute illustrations! After seeing what she did for my first article, I couldn’t wait to see what would happen for this one, and I am super excited about another illustration that makes me feel completely understood and seen.

Writing your first ever article for FYM?

So all in all, publishing with FYM is something I would totally recommend to anyone. And I would even go so far as to recommend it as the first article that PhD students should be asked to write. Why?

  • Articles for FYM can be written on “core concepts”, which can mean basically writing a literature review on the topic you are about to write a PhD thesis on, and one that is broken down so far that you will really have to have understood things. There is this saying attributed to basically all science educators in one form or another, that only if you can explain your topic to a child, do you actually understand it yourself. So explaining to children is actually a super helpful step in the process of getting into a topic yourself.
  • Writing something that is designed to be understood by a wide variety of audiences is really useful for another reason, too: to give to all your family and friends as an easy insight into what it is you are spending all your time on.
  • The feedback you get on how you talk about your topic will be helpful for all future communications about it; Practicing scicomm as early as possible is always a good idea :-)
  • Having a really positive publishing experience is a great start into a PhD, because surely other kinds of experiences will follow sooner or later. The submission through the uploads and forms and stuff works the same way for FYM as for all other journals (including the “oh crap, they want the images in a different format than I prepared them in! Let’s google how to convert them”, “Really? They need an abstract? Maybe I should have read the instructions more carefully…”, or “They are really counting the words on the submission! So now I need to cut an extra paragraph that I thought I could get away with…” surprises that are typical for the “Let me quickly submit this article and go for lunch! Oh wait, half a day later and I am still nowhere near the end of the process” experience that is so common when submitting articles. At the same time, the stakes feel a little lower for this kind of article, since as an early PhD student, you are writing about other people’s work, not yet your own (at least when writing a core concept article, there is also the “cutting edge research” article type, in which you are writing about some newly published article of yours). And then, as I described above, the whole process is really positive and friendly and supportive throughout, even though all the steps are the same as for any other journal (Waiting for the editor to send the article out to the reviewers. Seeing that stuff is waiting on a desk somewhere and compulsively checking every day whether it has been moved on and the email notification just didn’t make it through. Replying to a reviewer. That kind of things). So I believe that it’s a really good way to be introduced to the publishing process without being pushed into super cold water right away, building up confidence for later submissions of your own work.
  • FYM announces new articles on their social media (with lovely tweets!), which have a fairly wide reach, well above what most of us have, and that’s a great opportunity to be seen as authority on a topic by a large number of potentially interested people. Great opportunity to expand your network!
  • And, as I said before, I just love the illustrations and I would imagine that having something like this when you start working on a new topic would be super exciting and motivating :-)

What do you think? Will you suggest writing a FYM article to all your new PhD students now?

P.S.: Here are the links to my FYM articles again: “How does ice form in the sea?” and “When Water Swims in Water, Will it Float, or Will it Sink? Or: What Drives Currents in the Ocean?“.

My kids’ article on the formation of sea ice is out!

I recently published an article about how sea ice forms which, I think, turned out pretty well. But the coolest thing is the illustration that Jessie Miller did to go along with the article:

Illustration by Jessie Miller for my article published in Frontiers Young Minds, used with permission

Seeing this illustration (and, of course, having the article published) was a super nice surprise during the busy run-up to my big event, which is actually happening right now (good thing I know how to schedule blog posts ;-)). The illustration makes me suuuuper happy because to me it really captures what the article is about and, more importantly, what my goal in writing the article was. And I feel seen and understood in a profound way, and reminded of who I am. Never underestimate the power of #scicart! Thank you, Jessie!

Reference:

Glessmer, M. S. (2019) How Does Ice Form in the Sea? Front. Young Minds 7:79. doi: 10.3389/frym.2019.00079