#TeachingTuesday: Student feedback and how to interpret it in order to improve teaching

Student feedback has become a fixture in higher education. But even though it is important to hear student voices when evaluating teaching and thinking of ways to improve it, students aren’t perfect judges of what type of teaching leads to the most learning, so their feedback should not be taken onboard without critical reflection. In fact, there are many studies that investigate specific biases that show up in student evaluations of teaching. So in order to use student feedback to improve teaching (both on the individual level when we consider changing aspects of our classes based on student feedback, as well as at an institutional level when evaluating teachers for personnel decisions), we need to be aware of the biases that student evaluations of teaching come with.

While student satisfaction may contribute to teaching effectiveness, it is not itself teaching effectiveness. Students may be satisfied or dissatisfied with courses for reasons unrelated to learning outcomes – and not in the instructor’s control (e.g., the instructor’s gender).
Boring et al. (2016)

What student evaluations of teaching tell us

In the following, I am not presenting a coherent theory (and if you know of one please point me to it!), these are snippets of current literature on student evaluations of teaching, many of which I found referenced in this annotated literature review on student evaluations of teaching by Eva (2018). The aim of my blogpost is not to provide a comprehensive literature review, rather than pointing out that there is a huge body of literature that teachers and higher ed administrators should know exists somewhere out there, that they can draw upon when in doubt (and ideally even when not in doubt ;-)).

6 second videos are enough to predict teacher evaluations

This is quite scary, so I thought it made sense to start out with this study. Ambady and Rosenthal (1993) found that silent videos shorter than 30 seconds, in some case as short as 6 seconds, significantly predicted global end-of-semester student evaluations of teachers. These are videos that do not even include a sound track. Let this sink in…

Student responses to questions of “effectiveness” do not measure teaching effectiveness

And let’s get this out of the way right away: When students are asked to judge teaching effectiveness, that answer does not measure actual teaching effectiveness.

Stark and Freishtat (2014) give “an evaluation of course evaluations”. They conclude that student evaluations of teaching, though providing valuable information about students’ experiences, do not measure teaching effictiveness. Instead, ratings are even negatively associated with direct measures of teaching effectiveness and are influenced by gender, ethnicity and attractiveness of the instructor.

Uttl et al. (2017) conducted a meta-analysis of faculty’s teaching effectiveness and found that “student evaluation of teaching ratings and student learning are not related”. They state that “institutions focused on student learning and career success may want to abandon [student evaluation of teaching] ratings as a measure of faculty’s teaching effectiveness”.

Students have their own ideas of what constitutes good teaching

Nasser-Abu Alhija (2017) showed that out of five dimensions of teaching (goals to be achieved, long-term student development, teaching methods and characteristics, relationships with students, and assessment), students viewed the assessment dimension as most important and the long-term student development dimension as least important. To students, the grades that instructors assigned and the methods they used to do this were the main aspects in judging good teaching and good instructors. Which is fair enough — after all, good grades help students in the short term — but that’s also not what we usually think of when we think of “good teaching”.

Students learn less from teachers they rate highly

Kornell and Hausman (2016) review recent studies and report that when learning is measured at the end of the respective course, the “best” teachers got the highest ratings, i.e. the ones where the students felt that they had learned the most (which is congruent with Nasser-Abu Alhija (2017)’s findings of what students value in teaching). But when learning was measured during later courses, i.e. when meaningful deep learning was considered, other teachers seem to have more effective. Introducing desirable difficulties is thus good for learning, but bad for student ratings.

Appearances can be deceiving

Carpenter et al. (2013) compared a fluent video (instructor standing upright, maintaining eye contact, speaking fluidly without notes) and a disfluent video (instructor slumping, looking away, speaking haltingly with notes). They found that even though the amount of learning that took place when students watched either of the videos wasn’t influenced by the lecturer’s fluency or lack thereof, the disfluent lecturer was rated lower than the fluent lecturer.

The authors note that “Although fluency did not significantly affect test performance in the present study, it is possible that fluent presentations usually accompany high-quality content. Furthermore, disfluent presentations might indirectly impair learning by encouraging mind wandering, reduced class attendance, and a decrease in the perceived importance of the topic.”

Student expect more support from their female professors

When students rate teachers effectiveness, they do that based on their assumption of how effective a teacher should be, and it turns out that they have different expectations depending on the gender of their teachers. El-Alayi et al. (2018) found that “female professors experience more work demands and special favour requests, particularly from academically entitled students”. This was both true when male and female faculty reported on their experiences, as well as when students were asked what their expectations of fictional male and female teachers were. 

Student teaching evaluations punish female teachers

Boring (2017) found that even when learning outcomes were the same for students in courses taught by male and female teachers, female teachers received worse ratings than male teachers. This got even worse when teachers didn’t act in accordance to the stereotypes associated with their gender.

MacNell et al. (2015) found that believing that an instructor was female (in a study of online teaching where male and female names were sometimes assigned according to the actual gender of the teacher and sometimes not) was sufficient to rate that person lower than an instructor that was believed (correctly or not) to be male.

White male students challenge women of color’s authority, teaching competency, and scholarly expertise, as well as offering subtle and not so subtle threats to their persons and their careers

This title was drawn from the abstract of Pittman (2010)’s article that I unfortunately didn’t have access to, but thought an important enough point to include anyway.

There are very many more studies on race, and especially women of color, in teaching contexts, which all show that they are facing a really unfair uphill battle.

Students will punish a percieved accent

Rubin and Smith (1990) investigated “effects of accent, ethnicity, and lecture topic on undergraduates’ perceptions of nonnative English-speaking teaching assistants” in North America and found that 40% of undergraduates avoid classes instructed by nonnative English-speaking teaching assistants, even though the actual accentedness of teaching assistants did not actually influence student learning outcomes. Nevertheless, students judged teaching assistants they perceived as speaking with a strong accent as poorer teachers.

Similarly, Sanchez and Khan (2016) found that “presence of an instructor accent […] does not impact learning, but does cause learners to rate the instructor as less effective”.

Student will rate minorities differently

Ewing et al. (2003) report that lecturers that were identified as gay or lesbian received lower teaching ratings than other lecturers with undisclosed sexual orientation when they, according to other measures, were perfoming very well. Poor teaching performance was, however, rated more positively, possibly to avoid discriminating against openly gay or lesbian lecturers.

Students will punish age

Stonebraker and Stone (2015) find that “age does affect teaching effectiveness, at least as perceived by students. Age has a negative impact on student ratings of faculty members that is robust across genders, groups of academic disciplines and types of institutions”. Apparently, when it comes to students, from your mid-40ies on, you aren’t an effective teacher any more (unless you are still “hot” and “easy”).

Student evaluations are sensitive to student’s gender and grade expectation

Boring et al. (2016) find that “[student evaluation of teaching] are more sensitive to students’ gender bias and grade expectations than they are to teaching effectiveness.

What can we learn from student evaluations then?

Pay attention to student comments but understand their limitations. Students typically are not well situated to evaluate pedagogy.
Stark and Freishtat (2014)

Does all of the above mean that student evaluations are biased in so many ways that we can’t actually learn anything from them? I do think that there are things that should not be done on the basis of student evaluations (e.g. rank teacher performance), and I do think that most times, student evaluations of teaching should be taken with a pinch of salt. But there are still ways in which the information gathered is useful.

Even though student satisfaction is not the same as teaching effectiveness, it might still be desirable to know how satisfied students are with specific aspects of a course. And especially open formats like for example the “continue, start, stop” method are great for gaining a new perspective on the classes we teach and potentially gaining fresh ideas of how to change things up.

Also tracking ones own evaluation over time is helpful since — apart from aging — other changes are hopefully intentional and can thus tell us something about our own development, at least assuming that different student cohorts evaluate teaching performance in a similar way. Also getting student feedback at a later date might be helpful, sometimes students only realize later which teachers they learnt from the most or what methods were actually helpful rather than just annoying.

A measure that doesn’t come directly from student evaluations of teaching but that I find very important to track is student success in later courses. Especially when that isn’t measured in a single grade, but when instructors come together and discuss how students are doing in tasks that build on previous courses. Having a well-designed curriculum and a very good idea of what ideas translate from one class to the next is obviously very important.

It is also important to keep in mind that, as Stark and Freishtat (2014) point out, statistical methods are only valid if there are enough responses to actually do statistics on them. So don’t take very few horrible comments to heart and ignore the whole bunch of people who are gushing about how awesome your teaching is!

P.S.: If you are an administrator or on an evaluation committee and would like to use student evaluations of teaching, the article by Linse (2017) might be helpful. They give specific advice on how to use student evaluations both in decision making as well as when talking to the teachers whose evaluations ended up on your desk.

Literature:

Ambady, N., & Rosenthal, R. (1993). Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness. Journal of Personality and Social Psychology, 64(3), 431–441. https://doi.org/10.1037/0022-3514.64.3.431

Boring, A. (2017). Gender biases in student evaluations of teachers. Journal of Public Economics, 145(13), 27–41. https://doi.org/10.1016/j.jpubeco.2016.11.006

Boring, A., Dial, U. M. R., Ottoboni, K., & Stark, P. B. (2016). Student evaluations of teaching (mostly) do not measure teaching effectiveness. ScienceOpen Research, (January), 1–36. https://doi.org/10.14293/S2199-1006.1.SOR-EDU.AETBZC.v1

Carpenter, S. K., Wilford, M. M., Kornell, N., & Mullaney, K. M. (2013). Appearances can be deceiving: Instructor fluency increases perceptions of learning without increasing actual learning. Psychonomic Bulletin & Review, 20(6), 1350–1356. https://doi.org/10.3758/s13423-013-0442-z

El-Alayi, A., Hansen-Brown, A. A., & Ceynar, M. (2018). Dancing backward in high heels: Female professors experience more work demands and special favour requests, particularly from academically entitled students. Sex Roles. https://doi.org/10.1007/s11199-017-0872-6

Eva, N. (2018), Annotated literature review: student evaluations of teaching (SET), https://hdl.handle.net/10133/5089

Ewing, V. L., Stukas, A. A. J., & Sheehan, E. P. (2003). Student prejudice against gay male and lesbian lecturers. Journal of Social Psychology, 143(5), 569–579. http://web.csulb.edu/~djorgens/ewing.pdf

Kornell, N. & Hausman, H. (2016). Do the Best Teachers Get the Best Ratings? Front. Psychol. 7:570. https://doi.org/10.3389/fpsyg.2016.00570

Linse, A. R. (2017). Interpreting and using student ratings data: Guidance for faculty serving as administrators and on evaluation committees. Studies in Educational Evaluation, 54, 94- 106. https://doi.org/10.1016/j.stueduc.2016.12.004

MacNell, L., Driscoll, A., & Hunt, A. N. (2015). What’s in a name: Exposing gender bias in student ratings of teaching. Innovative Higher Education, 40(4), 291– 303. https://doi.org/10.1007/s10755-014-9313-4

Nasser-Abu Alhija, F. (2017). Teaching in higher education: Good teaching through students’ lens. Studies in Educational Evaluation, 54, 4-12. https://doi.org/10.1016/j.stueduc.2016.10.006

Pittman, C. T. (2010). Race and Gender Oppression in the Classroom: The Experiences of Women Faculty of Color with White Male Students. Teaching Sociology, 38(3), 183–196. https://doi.org/10.1177/0092055X10370120

Rubin, D. L., & Smith, K. A. (1990). Effects of accent, ethnicity, and lecture topic on undergraduates’ perceptions of nonnative English-speaking teaching assistants. International Journal of Intercultural Relations, 14, 337–353. https://doi.org/10.1016/0147-1767(90)90019-S

Sanchez, C. A., & Khan, S. (2016). Instructor accents in online education and their effect on learning and attitudes. Journal of Computer Assisted Learning, 32, 494–502. https://doi.org/10.1111/jcal.12149

Stark, P. B., & Freishtat, R. (2014). An Evaluation of Course Evaluations. ScienceOpen, 1–26. https://doi.org/10.14293/S2199-1006.1.SOR-EDU.AOFRQA.v1

Stonebraker, R. J., & Stone, G. S. (2015). Too old to teach? The effect of age on college and university professors. Research in Higher Education, 56(8), 793–812. https://doi.org/10.1007/s11162-015-9374-y

Uttl, B., White, C. A., & Gonzalez, D. W. (2017). Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related. Studies in Educational Evaluation, 54, 22-42. http://dx.doi.org/10.1016/j.stueduc.2016.08.007

Leave a Reply