Tag Archives: kitchen oceanography: food related

#KitchenOceanography with Judith and her hot chocolate

Let’s talk about zonal jets! They keep popping into my life all the time right now, and that has got to mean something, right?

Zonal jets, for all that are not quite familiar with the term, are fast-flowing currents (i.e. “jets”) that move along lines of constant latitude (therefore “zonal”). The occur in the ocean (e.g. the Antarctic Circumpolar Current, or the Gulf Stream after separating from the coast) and in the atmosphere (e.g. the subtropical jets stream). And you might be familiar of pictures of Saturn with all the belts around it? Yep, zonal jets!

In December I went to the Science and Industry Museum in Manchester (a.ma.zing place!) and they had one exhibit there that shows zonal jets: A sphere sitting inside a transparent sphere with some sort of fluid between the two. You can put the outer sphere in rotation and, through friction, this puts the fluid in motion. But instead of all the fluid moving with the outer sphere, there is of course also friction with the inner sphere, so a shear flow develops, which breaks up into those zonal jets (which then break up into all the eddies when the outer sphere slows down again).

Please excuse the crappy video. You see the largest part of the upper half of the sphere, but I was filming with one hand and turning the thing with the other… And I didn’t plan on writing anything about it, but then this happened: My friend Judith (check out her Instagram!) and I went on a mini cruise (all the way across Kiel canal!) in freeeeezing temperatures, and therefore obviously ended up with this:

Picture by Judith Schidlo (check out her Instagram!)

And this is where kitchen oceanography comes in. What do you think happens when you drop in that yummy chocolate and start stirring? This!

Do you see how the fluid doesn’t move solid body-ish, but how there are jets and then more stagnant areas? Doesn’t this make you want to have a hot chocolate, and Right Now? For scientific purposes, of course…

Sea ice formation, brine release, or: What ice cubes can tell you about your freezer

Many of my kitchen oceanography experiments use dyed ice cubes, usually because it makes it easier to track the melt water (for example when looking at how quickly ice cubes melt in freshwater vs salt water, or for forcing overturning circulations).

But the dyed ice cubes tell interesting stories all by themselves, too!

Salt water doesn’t freeze

“Salt water doesn’t freeze”? Then how do we get sea ice in the Arctic, for example?

When freshwater freezes, the water molecules arrange in a hexagonal crystal structure. If there is salt (or anything else) in the water, however, the ions don’t fit into the regular structure. Ice freezes from the water molecules, and all the disturbances like salt get pushed in the last remaining bits of liquid water, which therefore gets higher and higher concentrations of whatever was dissolved in it. As those little pockets with high concentrations of salt get cooled further, more and more water molecules will freeze to the surrounding freshwater ice, leading to even higher concentrations of salt in the remaining liquid water. So the freshwater is freezing, while rejecting the salt.

Of course if you cool for long enough, also the last bit of remaining water will freeze eventually, but that takes surprisingly long (as you can try by freezing salt water in some of the cups ice cube trays and freshwater in others, for comparison. Also the structures of freshwater vs saltwater ice look very different and are interesting to look at, see how here).

“Brine release”

When the ocean freezes, this rejection of high-salinity water leads to interesting phenomena: Even when you melt it again to include all the pockets of high salinity water, sea ice will have salinities way lower than the water it froze from. This is because of a process called brine release. Since you are cooling the ocean from above, sea ice also forms from the surface downwards. This means that it is easy for the salty water to be pushed, “released”, or “rejected”, downwards, into the liquid ocean below. That ocean will then of course get more salty right below the ice!

In the picture below you see something similar happening in the left pictures. Instead of salt, I have used blue food dye for visualization purposes. In the top left, you see an ice cube exactly as it looked when I took it out of the ice cube tray it froze in, and in the bottom left you see the same one after I let it melt a little bit so the surface got smoother and it got easier to look inside (a lot more difficult to hold on to, though!).

Do you see how the top part of the ice cube is pretty much clear, while the bottom part is blue? That’s because it froze top-to-bottom and the dye got pushed down during the initial freezing process!

Stuck in an ice cube tray

Something else that you see in the top left picture is the effect of the ice cube being stuck in the ice cube tray as it froze: Pores filled with blue dye that had nowhere to escape!

Had I taken out those ice cubes earlier, when they had just frozen half way through, we would have found a clear ice layer floating on a cold, blue ocean. Maybe I should do that next time!

Checking on the temperature distribution of your freezer

Something else fun we can observe from the right pictures: Here, the dye was concentrated towards the center of the ice cube rather than the bottom! How did that happen?

My theory is that those ice cubes were located in an area of the freezer that was cooling from all sides (more or less) equally, whereas the ones shown on the left must have been placed somewhere where cooling happened mainly from the top.

So if you ever want to know where the cooling in your freezer happens, just put lots of dyed little water containers everywhere and check from which side the dye gets rejected — that’s the cooling side! Actually, I might check that for the freezer below just for fun. Would you be interested in seeing that done?

Now it’s your turn!

Let’s look back at the ice cubes I froze yesterday in the picture above. I’ve now written about a lot of things I see when I look at them. What else do you see? Do you think it’s interesting to use with kids, for example? I’ve used those experiments with first year university students, too, I think there is plenty to observe and explain here!

Stuff you can (and should!) observe in your kitchen: circulation in the water when boiling eggs

Now that I have introduced the new tag “kitchen oceanography: food related” to my blog, it’s time to add a couple new posts to that category. And today I have a fun post for you!

But first, what does “kitchen oceanography” even mean?

Kitchen oceanography

/ˈkɪtʃɪn ˌəʊʃəˈnɒɡrəfi/
noun

The benefits of “kitchen oceanography”

It’s pretty apparent why “kitchen oceanography” is a great alternative to regular tank experiments: because you can do it with stuff you have at home rather than needing access to a lab with a tank, and then a lot of water, salt, dye, other resources to conduct the experiments. Doing kitchen oceanography, we use a minimal amount of resources.

But the second, even larger benefit to me is that you can do these kinds of experiments and observations basically everywhere and at any time. So you can fit in a quick session of kitchen oceanography while sitting in front of the fire place on a skiing trip with friends, or while doing the dishes with your godchild. And you can inspire others who might not have access to labs to still do cool oceanography experiments, at home or wherever they like!

Kids who have cooked with their parents are more likely to be interested in STEM

Apparently, the biggest predictor of future interest in STEM topics is whether people as kids often cooked with their parents! No literature source for this, but that’s what my educational research colleagues next door told me… So playing in the kitchen, whether on kitchen oceanography or with food, is a good thing!

It’s not like watching paint dry: Observing boiling eggs

Observing boiling eggs might not sound like a super exciting activity to engage in, but sometimes it is. Last year we did observe interesting foam pattern when boiling eggs (I still can’t explain where the foam is coming from! Can you?).

Foam pattern in a pot of boiling eggs

Foam pattern in a pot of boiling eggs. P.S.: The “black egg” sings different songs to let me know how hard-boiled my eggs are at any given moment. I love this because they are songs I learned from my godson and it always reminds me of him and his family :-)

Foam pattern show circulation within the pot

The pattern in the foam show the convection pattern of the boiling water around the eggs which act as obstacles. Water is raising from the bottom of the pot to its surface, bringing up foam. But the eggs are located so close below the water’s surface that the circulation above them (if there is one) is pretty much disconnected from the convection happening all around the eggs.

But then if you throw out the water…

Limescale deposits at the bottom of an empty pot after boiling eggs in it

Limescale deposits at the bottom of an empty pot after boiling eggs in it

Even the empty pot still shows you what the circulation pattern must have been like!

But then the next cool thing happens when you throw out the water: There are limescale crystals on the bottom of the pot! And, interestingly enough, they show the former locations of the eggs. And I think they are forming in exactly those spots because just as there is (hardly any) circulation above the eggs, the circulation below is also inhibited, water has longer residence time (because it isn’t whipped away by convection) and those crystals can form.

An alternative explanation might be that there is more limescale below the eggs because calcium carbonate gets dissolved from the egg shells and gets deposited as limescale right below the eggs because the concentration is highest closes to the eggs.

Which explanation do you think is more likely? Or do you have another one entirely?

Layered latte: A great real-life example of double-diffusive mixing!

Sometimes sitting in a café for a work meeting with #lieblingskollegin Julia can lead to unexpected discoveries of oceanographic processes — in my latte! It’s those little things that inspire blog posts…

“Kitchen oceanography” brings the ocean to your house or class room!

Oceanography is often taught in a highly theoretical way without much reference to students’ real life experience. Of course a sound theoretical basis is needed to understand the complexity of the climate system, but sometimes a little “kitchen oceanography” — doing experiments on oceanographic topics with household items — goes a long way to raise interest in the kind of processes that are not easily observed in the real world. I’ve previously written a lot about simple experiments you can perform just using plastic cups, water, ice cubes, and a little salt. But sometimes it’s even easier: Sometimes your oceanography is being served to you in a cafe!

Oceanic processes can be observed in your coffee!

Have you ever looked at your latte and been fascinated by what is going on in there? Many times you don’t just see a homogenous color, but sometimes you see convection cells and sometimes even layers, like in the picture below.

Layers in a latte.

Layers in a latte.

But do you have any ideas why sometimes your latte looks like this and other times it doesn’t?

When you prepare latte in the right way, many layers form

Layers forming in latte (and in the ocean or in engineering applications) are an active research field! In the article “laboratory layered latte” by Xue et al. (2017), the authors describe that the “injection velocity” of espresso into the warm milk has to be above a critical value in order for these pretty structures to form in a latte. They even provide a movie where you can watch the layers develop over a period of several minutes.

The homogeneous layers with sharp boundaries are caused by double-diffusive mixing

Double-diffusive mixing, which is causing the formation of these layers, is the coolest process in oceanography. In a nutshell, double diffusive mixing is caused by two properties influencing density having different rates of molecular diffusion. These different rates can change density in unexpected ways and an initially stable stratification (high density at the bottom, low density on top) can, over time, become statically unstable. And static instability leads to adjustment processes, where water parcels move in order to reach the position in the fluid where they are statically stable — the fluid mixes.

Layers in half a glass of latte.

Layers in half a glass of latte.

But there are more fascinating things going on with the latte. Would you expect this stratification to remain as clearly visible as it is in the picture above even though the glass is now half empty? I did not! And then check out what happens when you move the glass: Internal waves can travel on the boundaries between layers!

You can use this in class to teach about mixing!

Mixing in the ocean is mostly observed by properties changing over time or in space, and even though (dye) tracer release experiments exist, they are typically happening on scales that provide information on the large-scale effects of mixing and not so much on the mixing itself. And they are difficult to bring inside the classroom! But this is where kitchen oceanography and experiments on double-diffusive mixing come in. If you need inspiration on how to do that, I’ve recently published an article on this (unfortunately only in German), but there are plenty of resources on this blog, too. Or shoot me an email and we’ll talk!

P.S.: Even though the coffee company is displayed prominently in the pictures above, they did not pay for my coffee (or anything else). But if they’d be interested and make me a good offer, I’d definitely write up some fun stuff on learning oceanography with coffee for them ;-)

Guest post: Using seawater to make bread!

Last week I got one of the coolest emails I have ever received: Someone had found my blog while googling for the salt content of seawater in order to use it to make bread, and he sent me a couple of pictures the resulting bread! Of course, I asked if I could share it as a guest post on my blog, so here we go (Thanks, Martin Haswell, for this unique and inspiring contribution! See, everybody? Real-world impact of science blogging!):

Making bread using seawater

There is nothing like a challenge from your best friend, to do something that you’ve never done before but might just work. In my case, make bread using sea water.

My friend Mandy had brought me back from New York a copy of Jim Lahey’s book “My Bread”. Jim’s ‘no-knead’ method of bread making uses flour, water, salt (normally) and a tiny amount of yeast – and a lot of time, but no kneading. The dough is left for a long time to rise and is baked very very hot, and makes a tasty and crusty loaf.

Jim has a recipe in his book called  “Jones Beach Bread” in which he uses seawater instead of house water plus salt to make the dough. Knowing that we both used the ‘no-knead’ recipe and that I had access to a beach with clean water, Mandy challenged me to follow this recipe, and this is how it went.

Martin collecting seawater on the beach, far enough out to miss most of the turbidity

Martin collecting seawater on the beach, far enough out to miss most of the turbidity

Martin checking the seawater sample for sand or other impurities

Martin checking the seawater sample for sand or other impurities

Jim Lahey’s book “My Bread” that contains Jim’s 'no-knead' method of bread making used for the bread in this blog post

Jim Lahey’s book “My Bread” that contains Jim’s ‘no-knead’ method of bread making used for the bread in this blog post

Waiting for the bread to raise

Waiting for the bread to raise

The finished result! Doesn't it look delicious?

The finished result! Doesn’t it look delicious?

The bread tasted very good, crusty and tasty. I made two loaves, one with the seawater filtered through a coffee filter and the other with unfiltered seawater. Normally this recipe needs around 12-18 hours rising time but this took 28 hours for the two risings, but it is winter in southern Brasil (Florianópolis, on the coast) and the day temperature was only 72F (22°C) on the day of the experiment. It’s also possible that the greater proportion of salt might have hindered the development of the yeast and held back the rise. This wasn’t a very scientific experiment.

I calculated that Lahey’s original no-knead’ recipe calls for 8g salt to 300g of water which makes 26.66g per litre, whereas sea water (according to Mirjam’s 2013 blog is 35g/litre so this should mean that the sea bread loaf should be around 30% more salty than normal; if I’m honest, it didn’t tasty significantly more salty).

Further experiments: the obvious test would be a sea water loaf vs conventional made, risen and baked at the same time.

Notes:

The Jones Beach in Jim’s recipe is the Jones Beach State Park on Long Island, New York State. The current water cleanliness data is here (PDF), scroll down for the Jones Beach SP results.

The beach that I collected my sea water from is currently ‘própria‘ but I wouldn’t collect after heavy rain (runoff) or heavy seas (turbidity).  As a safety precaution one could boil the sea water and let it cool just enough before using. In fact, when the weather is cold, that would be the best way of giving the bread a good start.

[note by Mirjam: I’ve done a super quick google search and it looks like typical salinities for the Florianopolis area can go down to 30-ish and thus be lower than the typical, open ocean value of 35, but during summer they might go up to 37 (Pereira et al., 2017) but in addition to the seasonal changes, your salinity probably depends very much on which beach you took the water sample at (for example if it was a lagoon-ish beach with a lot of freshwater runoff and not so much mixing with the open ocean). Since you collected the water fairly close to the beach and during winter, it’s likely that the salinity wasn’t quite as high as the 35 I mentioned (which would explain why the bread didn’t taste as salty as you might have expected). If you wanted to know the exact salinity next time you are making bread, an easy method to measure the salinity of sea water would be to boil a liter until all the water has evaporated and weigh the remaining salts. This isn’t very precise for oceanographer-standards, since some of the substances that oceanographers include in their measure of “salinity” in sea water at normal temperatures might actually evaporate with the water, but since the largest constituent of the “salt” in sea water is just normal NaCl, the mistake you’d be making is probably small enough for cooking purposes, and you’d get a general idea of how “typical” your sample is in terms of seawater salinity.]

Bio:

Martin Haswell is an English photographer who loves travel and making bread.

“Laboratory layered latte” – combining latte and double diffusion. Easily my favourite paper ever!

My friends know me well. Especially A&I, which was proven again when they sent me the link to an article about two things that I am mildly obsessed with: Latte and double-diffusive mixing.

My obsession with latte is a fairly recent thing, but I have been known to blog about interesting convection pattern in it (for example here). The obsession with double-diffusive mixing, however, is well documented for more than the last 12 years (for example when I am writing experimental instructionspoems or scientific articles about it).

The double-diffusive process that I have been most concerned with is salt fingering, because it is oh-so-pretty, and also fool-proof to create for teaching purposes (when you know how to do it).

Diffusive layering I seem have to be a little frustrated with, at least in teaching (but reading back this post now, it turns out that that was entirely my own fault and not my students’. Oh well, you live and learn! Isn’t this exactly the kind of stuff that makes for great teaching portfolios? ;-)).

And it also turns out that I did the experiments themselves all wrong. According to the article “laboratory layered latte” by Xue et al. (2017). I should not have been trying to carefully stratify a tank in order to see diffusive layering. Instead, I should just have quickly poured the lower density fluid into the higher density one, and layers would have formed by themselves!

So there is one thing that you won’t see any time soon:

Yep. Me drinking latte from any kind of vessel that doesn’t let me look at the stratification! I don’t know how I could ever have fallen into the trap of missing out on observing fluid dynamics while having my early morning coffee in the office. Now I urgently need a nice glass mug!

And you should go check out the article, it’s a really nice read. My new ambition in life: Write a fluid dynamics research article that applies the FD to some really cool, yet mundane, every day thing. Are you in, Elin? :-)

Xue, Nan and Khodaparast, Sepideh and Zhu, Lailai and Nunes, Janine K. and Kim, Hyoungsoo and Stone, Howard A., Laboratory layered latte. Nature Communications 8(1), 2017

Of cupcakes and ice cores

For a popular science presentation on climate change, I needed a simple illustration for how ice cores can be used as archives of past climates. Luckily, my sister and family were excited to do some early Christmas baking for climate science!

And playing with food colors is always fun…

I think I had too much fun playing, actually, the “ice core data” would have been a lot easier to interpret if the different layers were just laying flat!

I should probably noticed here already that the color pattern wasn’t as regular as it should have been for easy interpretation of the core data later…

But it was fun! And they rose beautifully even though we were a little afraid that the time between mixing in the baking powder and actually baking the muffins was kinda long (because we had to mix in all the different dyes…)

The really difficult part, it turns out, was the coring itself. I had wider-than-usual straws, but instead of just cutting out the core, it was really difficult to have them pierce through the crust, and they compressed the core much more than I had hoped.

You can kind of see where the core goes in the cross section, and how the different colors correspond to their old locations inside the cupcake. But somehow this worked much better in my imagination than it did for real!

And I have a new-found appreciation for food bloggers. It’s really difficult to take good pictures of food!

But in case you were wondering: They taste just like boring, non-rainbow muffins. And my niece liked them! :-)

Foam pattern when hard-boiling eggs

Today we have foam patterns again, but of a very different kind than usually:

I don’t know if I have just never noticed before (I can’t really imagine I would have missed that?), if it never happened when I have boiled eggs because I always boil my eggs with more bubbles and hence more turbulence, or if French eggs are just different from german eggs?

But living in this shared flat in Grenoble is proving to be quite educational. Not only have we learned that you should never wash eggs because that destroys some protective layer of “hen juice” (technical term coined by Nadine), we also learned that a peanut and a salted peanut have different names in French (l’arachide vs la cacahouètte), and that there are cheeses with a layer of ash in them.

But anyway, I don’t think it’s foam that comes off the eggs, I think it’s coming off the bottom of the pot. Because if those bubbles are raising up from the bottom, that would explain why there are more bubbles around the edges of the eggs (when they had to move around the eggs to get to the surface) than in between, and that there is hardly any foam above the eggs? Or what do you think?

And then, of course, we are learning all the cool oceanography stuff, too, and you can read all about it over on Elin’s blog!

Frost flowers on ice cream: When you start thinking about phenomena and something really annoying, all of a sudden, becomes really cool.

Frost flowers on ice cream. You must have seen them before: They sometimes occur when you’ve had some ice cream, put the left-overs back in the freezer, and take them out again. And there you have it: Water-ice crystals all over your lovely ice cream! Completely annoying because, obviously, they only taste like water and mess up your whole ice cream experience (or is that only me)?

You know I’m kinda fascinated with ice crystals on frozen blended strawberries, but last time I had some, there weren’t only crystalline structures, but there was frost on it:

Erdbeereis_1

Frost occurs when water vapour freezes without going through the liquid phase. Look at the awesome crystals!

Erdbeereis_2

Once I started thinking about the process that formed the ice and realised that those were actually frost and not just ordinary ice crystals, they all of a sudden stopped being annoying and instead became something that I kinda look forward to finding when I open a tub of my frozen blended strawberries. Because the structures are different every time, and really really pretty! And also how awesome is it to know that those ice crystals formed from water that wasn’t even liquid? Yes, this is the kind of stuff that makes me happy! :-)