Tag Archives: FieldWorkFix

Teaching field courses in a virtual setting

For many people it has been (and still is!) a huge hassle to quickly figure out ways to teach field courses in a covid-19 world, and I can relate so much! But I’m also getting more and more excited about the possibilities that are opening up when we think about fieldwork in a new way. And as I’ve been researching and teaching workshops for university teaching staff on how to transition field courses into a socially-distanced world, I have seen many exciting examples. In this blogpost, I want to share what I think is important to consider when transitioning field courses online, and some really amazing ways I’ve seen it done in the second half of the post.

Most importantly: Don’t despair, and don’t undermine whatever you end up doing!

Yes, we’d all prefer to be outside for our field courses, and not stuck to our home office, looking at our students’ faces in tiny moving stamps on a video call (at best) or talking into the wide, quiet void (at worst). There are many ways to bring fieldwork to life even in socially-distant settings, and even small “interventions” might have a large effect.

There are a couple of things we need to keep in mind:

Students might actually learn better in an unconventional setting

While we like to think that field courses are taught a certain way because they have been optimized for the specific learning outcomes, that might not actually always be the case. In many cases, they are just following a tradition without actually questioning it (and I’ll talk a little about why that is bad further down). And there are studies that show that sometimes virtual learning environments work better than traditional ones: Finkelstein (2005) showed for a direct current circuit laboratory that students who used simulated equipment outperformed students who went through a conventional lab course, both on a conceptual survey of the domain and in the coordinated tasks of assembling a real circuit and describing how it worked. So why would we assume that similar things might also be true for virtual field courses?

Virtual science is real science, too

Honestly, how many scientists do we know who are in the field every day or even only most of the time? Very very few. Most science these days happens virtually, whether data is acquired remotely, or whether scientists are using datasets that other people measured, or scientists working with numerical models. Virtual science is real science, too, and therefore even though it is not the only kind of science, maybe it’s helpful to convey to the students that while they are missing out on a fun experience (and certainly on some learning outcomes that we wish they had), they are still able to do real science.

(On that note: Kitchen Oceanography is also science! Check out this post for proof…)

Don’t accidentally undermine your virtual field work

That said, while I think it’s important to be honest about what is lost — the travel to an exciting destination, the experience of being on a research ship, the smell of a certain weather pattern, the feeling of different temperatures and humidities than at home — we need to be super careful to not undermine whatever we end up teaching virtually. It’s maybe not our first choice to do it this way, and we might not have spent as much time preparing it as we would have liked, but constantly telling students what they are missing out on is not going to increase their motivation in a time that is already taxing on everybody.

What are field courses?

When I’m speaking about field courses here, what I envision are the kind of field courses I am familiar with in STEM education: Excursions where biologists investigate an ecosystem, sea practicals where oceanographer spend time on a research ship, trips where engineering students look at structures for coastal protection in situ — basically outdoor teaching.

Following the classification by Fedesco et al. (2020), those would all either fall into the categories of

  • collecting primary data/visiting primary sources”, where students enter an authentic, new-to-them research setting in order to do open-ended investigations on data that they generate while in the field, and where learning outcomes (partly — I would argue that many learning outcomes don’t) depend on the results of that data. Students are creating new knowledge and are actively participating in authentic research processes;
  • “guided discovery of a site”, where the instructor is familiar with the site and plans activities that help students discover things, leading to pre-defined learning outcomes, because students are working with skills and concepts that they learned earlier in the course and apply them to a setting that is known in advance; or maybe
  • “backstage access”, where students visit a site that people usually don’t have access to, for example a wave power plant (or, when I was teaching the intro to oceanography a looong time ago back in Bergen, a company that makes oceanographic instrumentation, thanks Ailin!).

Learning outcomes in field courses

While field courses might have very specific, subject- and location-specific content, there are many learning outcomes that are common to most field courses, e.g.

  • social development
  • observation and perception skills
  • giving meaning to learning
  • providing first-hand experience
  • stimulating interest and motivation

(Compare Larsen et al., 2017, and others)

I think it is super helpful (always, but especially in this case) to look closely at learning outcomes, and to see how interconnected they really are. When I did this for the courses I am currently involved in, it turned out that surprisingly many of the learning outcomes can very easily be done virtually. Anything that is to do with planning of experiments, data analysis, learning of concepts could be disconnected from practicing observational skills or team working. And once they are disconnected, they can be practiced in different exercises which don’t have to rely on the same method of instruction. This makes it much easier to, for example, practice some parts in online discussions, while other parts required students to be outside and observe something themselves. The more things become modular in your mind, the easier it is to implement them.

What motivates students in field courses

When we think about field courses, we usually remember (and envision) them as extremely motivating because typically they are the occasions where students get super excited and want to dig deep and really understand the material. But why is that?

One explanation can be found in the self-determination theory by Deci & Ryan, where three basic psychological needs that need to be fulfilled in order for people to feel instrinsic motivation are described: autonomy, competence and relatedness.

Autonomy in the context of a field course means that students typically get to decide more when they are out and about doing fieldwork than when they are passively sitting in a lecture, just consuming whatever someone else decided to talk about. They might or might not get to decide what kind of questions they work on, but even if they don’t they are a lot more free in how they structure their work, how they interact with peers during that time, …

Interacting with peers is an important component for the second basic psychological need: Relatedness. In field courses, students and instructors typically spend informal time together: sitting in a bus, waiting for a boat, during the actual fieldwork. This provides opportunities for conversations that might otherwise not happen, to relate to peers and instructors on a more personal level, to also experience instructors as role models.

Lastly, field courses help students feel competence in a way they usually don’t get to in normal university settings. They work long days, potentially under challenging physical conditions, on the kind of question that they feel is more authentic than the exercises they typically do. So this might be one of the few times where they feel competent in the identity they are trying to develop: as a professional in their chosen field.

Barriers to fieldwork

But all the benefits of fieldwork come at a price (Giles et al., 2020). And those costs are not to be underestimated, especially because the barriers to fieldwork are especially felt by disabled students and those from racial and ethnic minorities, all of whom are critically underrepresented in the geosciences anyway.

Barriers include for example

  • the financial burden of travel / equipment / functional clothing
  • the emotional burden of dealing with daunting practical aspects of being outdoors (toilet breaks, periods)
  • the physical burden of accessibility issues (the physically challenging aspects of fieldwork that are satisfying and fun for some can on the other hand completely exclude others)
  • the logistical and financial burden (and emotional!) of finding a replacement for caring responsibilities
  • the mental burden of dealing with previous or expected harassment and inappropriate behavior

In the light of all these burdens, there is an urgent need to consider what can be done to make traditional field courses more accessible! And I think having to reinvent so many things now is a great opportunity to make sure those barriers are taken down.

Things to consider when filming for virtual field courses

Virtual field courses seems to often mean “videos of the instructor talking”, whether in their office or in the field. When filming instructional videos, for me the most important points to consider are the viewers’ attention spans, and what might keep a viewer engaged.

As for the attention span, there are many different studies that find that the shorter, the better. Of course it always depends on the video and the material and lots of other things, but the best advice would be to really think about whether anything needs to be longer than 15 minutes in one go (unless it is extremely well produced).

In order to keep viewers engaged, it’s really important to not only keep students in the role of “viewers”, but to engage them more actively. But for the periods where they are “just” watching, it seems that it is helpful to have the instructor visible and make them relatable as an authentic person. Especially having more than one instructor that interact with oneanother makes it more engaging and also provides more potential role models to students.

A list of best practices for creating engagement in educational videos is given in Choe et al., 2019; my take-away from that here.

How to motivate students in virtual field courses

Haha, you were hoping for an easy answer here? I think keeping in mind the three basic psychological needs of students that I described in the framework of the self-determination theory (autonomy, competence and relatedness) is extremely important. The better we can find ways to give students opportunities to feel any and all of those, the more motivated they’ll be.

Good-practice examples of virtual field courses

(This section was first called “best-practice”, but then I noticed that I am showing quite a lot of my own work and decided I’d rather take it down a notch ;-))

There are many categorizations possible for the examples I’m showing below, but I went for the continuum from “fully virtual” on the one hand and then “fully synchronous outside” on the other.

Fully virtual

If you are doing a fully virtual field course, no matter whether it is video-based or text based, it’s really helpful to integrate activities that aren’t related to listening or reading, for example:

Working with pictures of real examples

Providing students with a picture of a field site, or some example of a process, or some instrumentation that they’ve just learnt about, and asking them to annotate the picture is a quick and easy activity that also helps you gauge the students’ level of understanding. This works well if you just want students doing something else than listening to you for 15 minutes.

Working with simulations

It’s fascinating how many really nice virtual representations exist online on all kinds of topics once one starts looking!

I was very impressed with this virtual arboretum I came across recently. If you were teaching about plants, this might be a neat tool for example when you want students to practice drawing plant features, for example.

Investigating a compilation of media

At the recent #FieldWorkFix conference, we were shown this platform for a virtual site assessment which I found super impressive: It’s basically “only” 360° pictures, movies and audio files that are located on a map, so students can do a virtual walk through a park that they would otherwise have visited. But the way this is done, by for example also including a picture of the parking spot and visitors center, makes it feel very real and relatable, and the other pictures, movies and audio files of the park make it possible to do the real assessment.

Another example that I find extremely inspiring is not of a whole site, but it’s a study guide on ID-ing different kinds of rocks. There is a large visual bank of rocks, each combined with the data that students need to make an ID, for example a scale so one can estimate the real size of the rocks, responses to different acids that give clues about the chemical composition, etc.. It seems incredibly comprehensive and like a lot of fun!

Investigating real data

There are of course also many amazing datasets compiled for different regions, for example Svalbox.no for Svalbard, where students can use gis-systems to access many different kinds of data in a geo-referenced frame. Combined with for example google Earth this can be used for free exploration into many different questions.

Creating the features you want to investigate

Last not least, if you want students to do some practical work at home in a virtual course, there is always kitchen oceanography, which in this context means hands-on activities that can be done solely with materials that students typically have at home already. It can mean investigating ocean currents in plastic cups with water, ice and black tea (for 24 easy ideas check out my advent calendar), or it can mean using bread or chocolate bars to simulate an investigation into how rocks behave under pressure. Or if you wanted to get fancy, you could even send out materials (e.g. sand samples in small zip lock bags to get a feel of different grain sizes). Doing small hands-on stuff at home can be a great way to change up long days of sitting in front of a computer…

With “remotely controlled kitchen oceanography” we’ve shown how small, hands-on stuff that students do at home can be combined with experiments with more complicated setups, that are streamed from my kitchen. We were all in a video conference and could therefore all see each others’ experiments while being able to really closely look at our own. Doing something similar with an instructor in the field should be easy enough (if the network and weather cooperate).

Virtual with “outdoor” aspects

As much fun as kitchen oceanography breaks are, sometimes it might be even better to get students out the door with a purpose.

Observe something related to your field right outside your door

I’ve long been a fan of local fieldwork, i.e. sending students out to discover something related to the course’s topic right outside their door. For examples see for example my post on hydraulic jumps that are everywhere, on #BergenWaveWatching, or on #MoreThanWeeds.

But how to implement it in a virtual field course?

One way to take the pressure off students when doing local fieldwork tasks was shown to us at the #FieldWorkFix conference in this super best practice example that I got to experience myself during a fairly intensive virtual conference day: During the one hour lunch break, we not only had to eat lunch, but were asked to go outside and follow the wandering cards on here. Those are cards that give you instructions for your short walk: “Follow something yellow”, “sit for 2 minutes and observe things around you”, “take a right turn”, that kind of things (I, of course, didn’t follow the instructions because I wanted to see some water during my lunch break). We were also instructed to take pictures of something related to our field course, upload it on a website and write a short description (which I did).

And it was a great experience: Within this one hour, I did manage to eat lunch, go outside, take a picture, upload it, and add a description. This let me get some exercise and oxygen, gave me a purpose for my walk, and also proved how easy and fast these kinds of tasks can be if you don’t feel that you need to go to The Best wave watching spot, see the most exciting plant, whatever, but instead just have to find anything related to the course. And it was great to see all the different pictures of participants coming together! This is a way to introduce the local excursions that I will definitely be using in the future to give students that feeling of competence but also a glimpse of one of the typical feelings of fieldwork: That time is precious and every minute and every observation counts. But that a lot can be gained in a really short time, too!

Outdoor asynchronous

If one of the learning outcomes is to practice observation and classification skills, working with citizen science apps like iNaturalist or the german Naturgucker are great. Both are parts of citizen science projects where everybody can upload pictures and other observations (e.g. audio files) that are then classified either by that person directly or through discussions on the platform. Here students contribute to “real science” by collecting data that is relevant for a larger purpose, and they interact with specialists and thus get feedback and feel part of a bigger community. I don’t know anything like that for my own topics, but in biology those are great tools.

One tool that I really want to use in asynchronous outdoor teaching myself are geocaches. Geocaching is a virtual treasure hunt: small “treasures” (often tiny plastic boxes) are hidden and can be found using an app tht gives clues where to look. Geocaches can also be virtual, and are already used for educational purposes for example as “EarthCaches“. This special form of geocaches has been developed by the Geological Society of America and the goal is to bring people to geologically interesting sites and teach them something related to that site. Wouldn’t it be awesome to do something like that for your class?

Geocaches are peer-reviewed before they appear on the app, so a lower threshold version of the same idea could be QR-codes that you hide in the area you want your students to investigate, and have the QR-codes link to websites that you can easily adapt with the seasons, or update from year to year, or have full and easy control over. Of course you might need to check the QR-codes are still there before you run the class the next year, but this is fairly low-key if you are working close to home. (Close to home being an important caveat: in fully virtual semesters, students might actually not be where you are. Please consider ways to accommodate them!)

Outdoor synchronouns

In the last workshop I ran on virtual field courses, a participant told us about a tour guide system his institute had just bought in order to be able to do in-person excursions. The devil is in the detail, of course (how do you make sure all students can see while still maintaining the necessary distance from each other?), but that sounded like a great idea.

Ideas for assessment

Depending on what is being done during the virtual field courses, traditional forms of assessment might still work, or maybe they need to be adapted. What you could consider is including activities into your assessment that are motivating students in themselves, for example asking them to write Instagram or blog posts (and check out this blog post for a grading rubric for Instagram posts!).

In my experience, writing for a different audience than just one overwhelmed instructor is very motivating to students, both because they can use it to show their friends and family what they are doing all day long, and because social media provides the potential for super positive feedback (check out Robert’s tweet about one of my kitchen oceanography experiments that just received its 330th “like” today!). An assignment like that helps on all three psychological basic needs that help foster intrinsic motivation: feeling autonomous, competent and related. So why not give it a shot?

What is your experience with virtual field courses? Do you have best practice examples to add to this? Please share!

References

Ronny C. Choe, Zorica Scuric, Ethan Eshkol, Sean Cruser, Ava Arndt, Robert Cox, Shannon P. Toma, Casey Shapiro, Marc Levis-Fitzgerald, Greg Barnes, and H. Crosbie (2019). “Student Satisfaction and Learning Outcomes in Asynchronous Online Lecture Videos”, CBE—Life Sciences Education, Vol. 18, No. 4. Published Online: 1 Nov 2019
https://doi.org/10.1187/cbe.18-08-0171

Fedesco, H. N., Cavin, D., Henares, R. (2020). Field-based Learning in Higher Education: Exploring the Benefits and Possibilities. Journal of the Scholarship of Teaching and Learning, Vol. 20, No. 1, April 2020, pp.65-84. doi: 10.14434/josotl.v20i1.24877

Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., Reid S., LeMaster. R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical review special topics – Physics education research 1, 010103

Giles, S., Jackson, C. & Stephen, N. Barriers to fieldwork in undergraduate geoscience degrees. Nat Rev Earth Environ 1, 77–78 (2020). https://doi.org/10.1038/s43017-020-0022-5

Larsen, C., Walsh, C., Almond, N., & Myers, C. (2017). The “real value” of field trips in the early weeks of higher education: the student perspective. Educational Studies, 43(1), 110-121.

Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. New York: Guilford

#BergenWaveWatching: Field work right outside our students’ homes

This is a (admittedly terribly crowded — but I only had 1 A4 page and there are so many interesting #BergenWaveWatching stories to tell!) poster that I am presenting on behalf of myself, Kjersti Daae and Elin Darelius at the #FieldWorkFix conference next Tuesday (September 8, 2020). If you would rather listen to my poster’s voiceover than read the transcript below, please feel free to do that here!

Welcome to our poster!

The most important learning outcomes that, in my opinion, need to be achieved with a #FieldWorkFix are to enhance motivation and interest in concepts that are being dealt with theoretically in class, and in the students’ subject in general. When students are isolated in their homes and don’t have an inspiring community of learners in their field around them, it is so important to maintain a connection to their field of study! And one way to do that is by helping them realize that what they study is relevant and meaningful in the way that it helps them explain the world they see (even if they previously neither noticed nor felt the need to explain the waves on a puddle they accidentally stepped in).

There are different types of tasks that can help students achieve that level of observation and fascination with their subject (and if you are interested in what specific tasks can look like, check out the link on our poster, that will lead you to a blog post that links to all the different examples I am giving in the following, with tons of pictures).

For example, students could be asked to find realizations of a phenomenon in the world around them. It’s good to start with an easy example that they can definitely find in many different locations. In our case, “find a hydraulic jump” works well, because those can be generated artificially by turning on the tap in your sink, or can be observed near any weir, most rain gutters, and many rivers. These examples can be shared via the classes content management system or via social media – both work well and offer the added benefit of requiring some sort of description and explanation of what was observed and where, thereby practicing both note-taking and reporting skills.

Students could also be asked to observe a specific phenomenon in a specific place and discuss how the time of observation might have influenced what they saw, and how they would set up a schedule for observations that would be best suited to document the phenomenon. An example for that is looking at a tidal current underneath a specific bridge. Depending on what time and what day it is observed during the spring and neap cycle, the flow might be observed having different strengths or even going in different directions.

I am also a big fan of the more open “find something interesting to observe that is somehow related to the concepts discussed in class”, and being open to what students come up with. If you are worried about students not finding something interesting, I would encourage you to look at my Instagram @fascinocean_kiel, where I have almost 900 pictures of mainly waves (and a few other interesting oceanic phenomena) with explanations of what I saw. Once you start looking, there is physics everywhere!

The best thing about a collection like the one on my Instagram (or the one you are building by asking students to document their observations) is that they can be used for an indoor version of this #FieldWorkFix: Assigning pictures to students with the task to annotate and explain what they see. (Which is surprisingly difficult! I get often sent #FriendlyWaves; pictures of water with the request to explain what is going on there, and while it is very entertaining and educational, it is also really difficult because many of the relevant metadata does not come with a picture).

And finally, one could give the very open task to either come up with, or answer a given, research question by doing observations in the neighbourhood.

Depending on the social distancing requirements, all these tasks could be assigned to students working either in teams or by themselves. But if one of the learning outcomes is to practice working in teams, as it often is, this can be accommodated either way:

Several students can work together on the same research question and either do this together, or – which is most likely the mode they would choose in any case – divide work and take turns taking observations. This means they are also developing observational and collaboration skills: all have to be on the same page when it comes to what properties to observe by which methods and at what place and time, how to document, how much and what kind of metadata needs to be archived, how work is split between the students, et cetera.

Students could also be given complementing tasks that they each complete individually, knowing that they will ultimately have to put their results together like a puzzle. This, again, practices a lot of observational and communication skills.

The results of these tasks can be brought together either asynchronous, i.e. students report back in writing via the content management system or social media, or synchronous in video calls where students give presentations and there is a group discussion.

Lastly, one of the big learning outcomes often associated with field work is building students’ “identity as scientists”. Students come back from the field and talk about how we, meaning we oceanographers, or more generally, we scientists, do field work. Of course, the experience of a local field trip is not the same as a multi-day research cruise. But looking for phenomena related to ones field of study has an effect on how one sees the world. Very quickly, students will look at the world with different eyes, seeing physics where other people see the sparkly ocean or a fluffy cloud. This change in perception helps students feel like a specialist on their subject, as someone who has a deeper interest and wider knowledge than most people around them, and who looks at phenomena more carefully, trying to understand them. And this is a vicious circle: once hooked, it is difficult to stop looking at the world through that lens. Which is exactly what we wanted!

Thank you for your attention!

#KitchenOceanography as #FieldWorkFix

This is the longer version of the (A4!) poster that I am presenting on behalf of myself, Kjersti Daae, Elin Darelius, Joke Lübbecke and Torge Martin at the #FieldWorkFix conference next Tuesday (September 8, 2020). If you would rather listen to the voiceover than read the transcript below, please feel free to do that below! (Thanks to Torge, the voice over is about 1/3rd the length of the blogpost that I originally wrote to use as script :-D)

#KitchenOceanography: Bringing physical oceanography into students’ homes

Welcome to our virtual poster! I want to tell you about #KitchenOceanography: experiments that students can do at home, using common household items. Whether due to Covid-19, or institutional constraints like the lack of laboratory spaces or instructors, or simply because a hands-on experience would be useful with a certain concept, but it’s not on the syllabus – #KitchenOceanography is a great substitute for doing experiments in a laboratory course when that isn’t possible.

We use #KitchenOceanography when teaching physical oceanography and climate sciences. But the concept of home experiments can easily be transferred to other fields, and I therefore want to present the learning outcomes we can achieve on a fairly abstract level. If you would like to learn about #KitchenOceanography experiments in detail rather than just the general concept which I am presenting here, please follow the link on our poster to a blog post in which I have linked to tons of examples of different learning outcomes and experiments (and to all the experiments mentioned here, as well as 24 easy starter experiments).

One typical learning outcome in laboratory courses is the deepening of understanding of concepts that are theoretically dealt with in a lecture. If the concept itself cannot easily, affordably or safely be transformed into a home experiment, you could ask students to come up with a demonstration of an analogy with the concept instead. We have done that when teaching about processes that govern the El-Niño-Southern-Oscillationpattern in the Pacific Ocean. Of course, students cannot build a physical model that represents all the processes in the ocean and atmosphere that are relevant, but they can come up with demonstrations that show analogies of the cycle.

Another learning outcome in a laboratory might be developing intuition on the one hand, but also checking intuition against observations and explaining counterintuitive results. A great experiment here is to ask students to place ice cubes in two beakers with room-temperature water, one salt water and one freshwater. Asking students to predict which of the ice cubes will melt faster leads to 90% wrong predictions, and because it is really difficult to come to terms with a wrong intuition, it will lead to a lot of learning around experimental skills. Students will ask themselves if they maybe accidentally swapped the beakers because they didn’t take notes of which one was which. They might try to taste the water to test which of the beakers contains salt water (tasting in a lab of course being a big no-no). Even if the course is on a subject that is not related to ocean physics at all, this experiment still holds a huge potential to practice – and gaining appreciation for – laboratory skills.

A third common learning outcome in laboratory courses is for students to exercise curiosity and practice creativity. Using an experiment like the melting ice cubes one I just described ALWAYS works to do just that. Students will always come up with questions that they want to investigate. What would happen if the ice cubes weren’t floating in the water, but were forced down to the bottom of the beaker? Or if the ice cubes weren’t frozen fresh water, but had been made from salt water? In my experience, even students from other subjects that rolled their eyes when I told them they were going to do an experiment with water and ice in plastic cups get hooked and want to understand why their intuition was wrong and what more there is to explore.

Another learning outcome often connected to laboratory courses is to develop reporting skills. With the ice cube experiment I already showed the importance of taking notes even when experimenting only in your kitchen, and #KitchenOceanography lends itself to practicing writing lab reports: now many of the materials and conditions need to be described in a lot more detail because the cooking salt that I use in my kitchen might not have the same composition as the one that you are using, which might be kosher, or enriched in iodine, or reduced in sodium. So if we want to be able to compare results later on, all these things need to be written down. And of course, reporting skills might take a different form than a conventional lab report, especially when students are socially isolated, using for example social media or blogs as an outlet might provide them with community, feedback and recognition.

Lastly, a common learning outcome is to recognize problems and errors during experimentation. Since #KitchenOceanography is less supervised than a typical laboratory class, students will inevitably trouble-shoot more independently, and it’s a good idea to explicitly include reflection on what went wrong and how it was fixed in both documentation and discussion of the experiments.

So what would it look like to use #KitchenOceanography as #FieldWorkFix?

We have run #KitchenOceanography experiments in different instructional settings. Back in the day when we were still teaching in-person classes, in addition to using them as hands-on experiments within class, we gave them as homework. One task was to find a way to measure the salinity of a water sample the students were given, and came up with many surprising and creative solutions. In this setting, #KitchenOceanography was already done asynchronous: students did the experimental work whenever it suited them and report back. It can be done in exactly the same way, and reporting back can happen either in writing or in the class’ video call.

What we have had a lot of success with last semester, though, was a synchronous setup. In a video call, students did simplified versions of an experiment, and the instructor showed the full version of the experiment that students would have run in class, had that been possible. In our case, the experiments would ideally have been conducted on a rotating table to simulate Earth’s rotation. And while I have one in my home, not many students do. So we asked students to do the non-rotating version at home, while I presented the rotating version. The added benefit was that we took time to compare and contrast the two different versions and were thus able to isolate the effects of Earth’s rotation – something we would not have spent time on had students had the opportunity to work hands-on with the rotating tables themselves.

We had three modes of presenting the “full” version of the experiment: using pre-recorded videos (which is definitely the more error-proof way to do it!), running the experiments as a demonstration in real time, or asking students to “remotely control” me doing the experiment by telling me what parameters to modify to which values. This worked by me joining the video call with two devices: One that was recording myself and my experimental setup, looking into the tank from the side, and one that was mounted above the experimental setup and showed the top view (which was relevant for the experiment we were doing). Students shared their experiments via video stream when they chose to. The class was taught by a second instructor, which is what we would definitely recommend: Having one person host the meeting and deal with questions and difficulties as they arise, and have a second person focus on doing the experiment.

All in all, despite the unavoidable tech problems, doing these video conferences where we all did experiments together, were a lot of fun for all involved, and definitely helped make the somewhat sad and lonely experience of learning alone at home, instead of hands-on with a nice group of people, less lonely and a lot more fun.

Thank you for your attention.