Tag Archives: dye tracer

Broken water pipes

So yesterday this happened: When I was on my way to meet my friend for a run early in the morning, the whole pavement was flooded (look at the cute little hydraulic jumps!). After calling the authorities (and judging from the telephone operator’s voice, I wasn’t the first one! But then how should I know at 6 in the morning when there is nobody else around?) I took a couple of pictures.

There was a lot of water, some of which the storm drains managed to catch.

Luckily, I know where the storm drains lead to — via a little stream and a little lake — right into Kiel fjord!

Below, we are looking down from the sea wall into the fjord. Towards the right, you see the turbulent outflow from the storm drain into the fjord. And then on the left you see curtains of where the mud concentrations change! That’s what I was hunting for when I went down to the water — spots in which the muddy water could be used as flow tracer!

When we walk a bit further to the left, similar curtain pattern are still clearly visible, as well as turbulence behind that rock.

And even more clearly in the picture below: Interesting how there are pockets of clear water are persisting in the muddy waters, isn’t it? Even though the plume of muddy water is spreading, and is being slushed back and forward with the waves on Kiel fjord.

And this is the outer edge of the plume. I love how we can still see that the plume’s mud concentrations varied over time, with the water that came first being pushed furthest out from where the water enters Kiel fjord, and then newer water forming layers inside it.

Sorry about the weird lighting in the picture below, but you see well the record of mud concentrations in the plume:

Even cooler when you go to the other side of the plume: here the plume interacts with rocks and algae to form mud wakes!

I don’t think I’ve fully figured out why they look the way they look, or in general, why the plume is looking so different on this side. Any ideas?

Did you know that uranine starts fluorescing again when the ice cubes melt?

Yes, I had to test that! :-D

Top pic: Ice cubes (left) and leftover uranine solution from when I was preparing those ice cubes Bottom left pic: Melting the ice cubes in a water bath to see if they start glowing again when melting. Bottom right pic: Yes, they do! :-)

Top pic: Ice cubes (left) and leftover uranine solution from when I was preparing those ice cubes Bottom left pic: Melting the ice cubes in a water bath to see if they start glowing again when melting. Bottom right pic: Yes, they do! :-)

Why do I find this exciting? Because that means that a phase change of the water switches fluorescence as a tracer of that water on and off. Or the other way round: Seeing water fluoresce (or not) tells you what state the water is in without having to figure out anything else about that water.

…and funny how that the apprenticeship as chemical technician that I started in parallel to finishing high school (and didn’t finish because other stuff — oceanography — became more interesting) does come into play in the most unexpected moments :-)

Did you know uranine doesn’t fluoresce when frozen?

Something else I found out when checking on my ice cubes yesterday:

I had frozen a second tray* with ice cubes dyed with uranine (you know, the green stuff I found in the lake near my house the other day?). Like the other ones, they clearly froze back-of-the-freezer-forward, and the most interesting thing to me: Only the parts that weren’t frozen were fluorescing in the fridge!

For comparison, here a picture of the leftover water (so same dye concentration as the ice cubes) in the beaker, and the tray with frozen ice cubes next to it. You can see the beam of the UV lamp on the table* so you believe me that the ice cubes were lit with UV light, too, they just don’t fluoresce!

*Ailin and Steffi, did you see I got you a gold colored ice cube tray? :D Although, had I thought that I would be looking at the ice cubes themselves this much, I would probably have gotten two whites instead of a white and a gold one… But now you at least have a pretty ice cube tray in the lab :-)

**and a stain that I am only now noticing, but it wasn’t me; I was working super carefully since today I am not dressed for the lab and I don’t want that stuff on my clothes!

Balances of dyed and un-dyed waters

Oh look, a plume of (almost) un-dyed water hitting the green lake!

I am really fascinated by the balance between green water leaking out of the pipeline and into the rain drainage, the rain falling on the lake, and the rain water coming into the lake through the rain drainage system. Right now, the water coming out of the drainage is a lot less green than the water in the lake, which is itself being diluted by rain. So much so that you can see a clear plume entering before it is mixed so much, entraining so much lake water, that you loose track of it in the green.

This makes me think about all kinds of stuff: how long between it raining on the catchment area that drains into the lake and the water actually reaching it? And how large might the catchment area be relative to the area of the lake (i.e. how large are the respective influences on the color)? So much entertainment just stemming from a little green dye :)

The first autumn storm and its impact on dye tracer and water level

Last night it rained a lot. So the first thing to do this morning was to check what that had done to my green lake!

The dye is now a lot more diluted, but overall it still looks surprisingly green seeing that there is a lot of rain water draining into the lake. To give you an idea of how much more water is going through now than when I last showed pictures of the green stream: Look at how clearly you see the inflow into the lake in the picture above! And remember the little waterfall in the picture below? There is a lot more flow now.

Another thing that has gotten a lot easier to see now is where the dye goes into the Kiel fjord. Because the flow rate is a lot higher, so the flow itself is clearly visible, independent of the tracer, but also because … well, there isn’t a lot of water left in Kiel fjord!

This is what it looks like this morning: That little stream is water from the lake going into the fjord. Usually there is about a meter more water here!

It looks actually pretty cool to see exactly what the sea floor looks like.

Even though there are no tides in the Baltic (well, hardly any), we do have some large changes in water levels sometimes. They are due to changes in wind or pressure; in this case there was a lot of wind last night that pushed a lot of water out of the Kiel fjord into the Baltic.

What typically happens now is that this water doesn’t stay away indefinitely, but once the winds stop, forms a “seiche”, a standing wave, with a period of a little more than a day.

Of course I am going to check if there is water back by tonight, and then gone again tomorrow morning! Assuming, of course, that the winds stay calm. Otherwise that would influence where the water goes, too.

What I found really interesting, too, is that I saw a lot of herons now that I’ve hardly ever seen in this part of Kiel fjord before. It makes sense — usually there is too much water so they have nowhere to stand — but it was still weird to see five at once, and more as I walked along the fjord.

And — at last! — it was possible to see from land what those two sticks in the water are warning about: The stone in the middle! I had never actually seen that before. Now I know! And now the water can come back; wave watching is more fun when the waves have slightly shorter periods than the seiche’s 27 hours… ;-)

…Update in the afternoon…

After more rain throughout the day, we now actually see a clear plume of the rain water going through the green lake, with a little mixing on the sides as the green water is entrained!

And some water is back in Kiel fjord. Phew. So there is wave watching to be done right away:

Below, we see a really nice example of waves changing their direction as they run into shallow water, since their phase velocity depends on water depth (more about that here).

It’s all about the right equipment: That’s why I now own a UV lamp! I see a lot of fluorescent tracer spotting in my future!

Before I start gushing about my awesome new UV lamp (thanks for encouraging that purchase, Uta! :-)), some other updates on the state of green in the park across the road from my house (don’t know what I am talking about? Check out previous posts on the fluorescent dye tracer).

The lake is still bright green and very well mixed, similar to what it looked like in this post. But what is a lot easier to see now is the green water coming out into the Kiel fjord. It was very hard to see on the pictures I took the other day on our fluorescent night walk, and I didn’t see any by eye the first couple of days, but for the last days it has been clearly visible:

It’s still a lot clearer by eye than on the pictures, but even in these pictures you see the plume going out of the storm drain, don’t you?

In other news: my UV lamp arrived today and I am so excited!

So here is a water sample I took out of the green stream, photographed in normal daylight and then lit by my UV lamp. Pretty cool, ey? :-)

Who wants to come fluorescent water-spotting with me? :-)

Fluorescent night walk — following the stream through the lake into Kiel fjord!

Luckily some of my friends are crazy enough to bring the UV lamps and go on a night walk with me, following the green fluorescent stream! (Don’t know what I am talking about? Check out the previous posts (post 1, post 2) on why there is fluorescent dye in a lake across my street and why that is exciting)

Following the water

It looks very spooky when all of a sudden in the middle of a park you come across something looking like the picture below. Well, you would probably not come across it if you didn’t know where to look, but you get my point. And once you found it, you can follow it downhill.

But don’t let yourself get distracted by signs on the trees, someone is trying to lead you in the wrong direction ;-)

Because what we were looking for was, of course, the same lake I have been posting about today and yesterday, except now it looks like the picture below. If you thought it was creepy by day you know nothing of creepy!

Creepy, but also fascinating! Of course I have to inspect it more closely.

Below my hand holding the UV torch while I was looking at all kinds of critters in the water (poor things!)

Science is, of course, team work. Especially when you want pictures, too ;-) Thanks Maria and Tom for such a spontaneous and exciting adventure!

Below, Tom is shining the UV lights down the little water fall so we can take pictures.

And here you see the view from the upper lake down the water fall into the lower reservoir. Next time I will definitely not do such a fluorescent night walk without a tripod and a better camera than my phone!

It might have been a bit of a hassle to find if you didn’t know where to look, but since I know exactly where that lake drains into Kiel fjord, we could follow the fluorescent water out the storm drain into the fjord!

Here we are at the top of the sea wall, looking down, and you see eddies of fluorescent water coming out of the storm drain and into the fjord. Super cool to see that the flow was coming out on the edges of the drain, and that it was eddying. And that, even though there was not a large flow coming out, it could be seen quite far into the fjord, at least as far as our torches could still light the surface. Very very cool tracer oceanography! That was one exciting evening!! :-)

Dye tracer “in the wild”, day 2

This morning, the green lake looked different yet again.

If you remember yesterday’s pictures, we ended the evening with the lake being a fairly well mixed green color (picture on the right).

Now imagine my surprise when I came back in the morning and it looked like this:

The right side of the lake is still green, but the direct connection between inflow and outflow is an even brighter green! And the green inflow detaches once more at the tip of that little island (which it only did during the first observation yesterday, and two hours later the mixing had progressed around the tip).

There are only two ways I can think of how that could have happened:

a) During the night, there was a lot of un-dyed water added to the lake. Maybe through rainfall? But the effect would have been that the green color in the lake would have gotten diluted and, when the rain stopped, the inflowing water appears a lot greener than the surrounding lake water. Possible, even though I didn’t notice any rain during the night.

The other option is this:

b) Someone added more dye to the leaking pipes. This is the more probable explanation to me. The effect would be the same as above: A more intense inflow into a less intense lake.

In any case, the plume we are seeing now can only have been flowing with that intense a coloring into less green water for a couple of hours, otherwise the whole lake would have been mixed through and through.

I guess the easiest way to know which explanation is right would be (well, in addition to asking them directly) to have an objective measure of how green the water is, so that we would know if that changed over night or if the plume is really more intense now than yesterday. But with light that is always changing that is really not possible to say.

But this new green inflow is definitely beautiful: Look at the instabilities where it meets the stagnant lake water!

And more instabilities on the other side.

So those pictures were taken at around 7 in the morning. When I came back in the afternoon, the lake looked like this (sorry about the confusing lighting with the shadows and directly lit spots, can you ignore those and imagine what the color would look like under better light?):

Completely mixed and very very green! Interesting, isn’t it? So apparently the inflow stayed as intensely green as in the morning and, over the course of the day, mixed the whole thing.

P.S.: The company that puts the dye tracer in said on my Instagram @fascinocean_kiel that they are using uranine as dye, and that it’s completely safe for the environment. And, interestingly, that’s what we use in tank experiments under the name fluorescin, and that means that it is a fluorescent dye! I really need your UV light, Uta!! :-)

Dye tracers “in the wild”

You know I love dye tracers (remember the beautiful fluorescent green we used in the 2017 experiments in Grenoble, when we got to play with the 13m diameter rotating tank?) but today I found some “in the wild” again — on the way back from my morning run & swim no less, in Kiel’s Forstbaumschule.

I’ve seen a dye tracer here several times before, and it’s basically just an indicator for a leak in the district heating (and everybody claims that it isn’t harmful to the environment despite its color).

Dye as a flow tracer

Spotting leaks would be very difficult if you just had normal water running into places where there is other normal water. Last winter you could clearly see that the dyed water was quite a lot warmer than the rest because it melted ice away where it went, but at temperatures like to day you might be able to see a thermal signature with thermal imaging equipment, but it is nowhere near as obvious as during winter.

But today my timing was lucky: The pipes can’t have been leaking for very long yet, because there were clear boundaries visible between the “old” lake water that wasn’t dyed yet, and the plume of dyed water entering into the lake and leaving it on the other side.

Dye as age tracer

So in a way the dye also acts as age tracer (since there are currently no other inflows into that lake. It would obviously be different if there were): the “old” water is still dye-free, whereas the “young” water is bright green. And then there are the regions where older and younger water mix and the color isn’t quite as intense.

Dye to visualize mixing

On the boundaries between the dyed water and the old lake water you see mixing in form of tiny eddies, and I’m pretty sure that when I go back this afternoon, the whole lake will be this awesome fluorescent color. And I am curious to see if there will still be flow structures visible or if it’ll all just be bright green :-)

Update: 2 hours and 11 hours later

And I went back. Twice.

Below you see how the coloring changes at the inflow mixes more and more with the lake water: left the picture taken at 7:15 am, then 9:15 am, then 7 pm. Fascinating! :)