Category Archives: tank experiment

Kelvin-Helmholtz instabilities

I’m back at my happy place — the teaching lab at GFI in Bergen! :-)

Here a quick look at what we’ve been doing today: Filling the large wave tank! With clear fresh water and then salty pink water that forms a layer below. As the pink water flows underneath the clear water, there is shear between the two layers, waves form and then they break. Beautiful Kelvin-Helmholtz shear instabilities!

Why have we filled the large tank? Just you wait and see… ;-)

Experiment: Oceanic overturning circulation (the slightly more complicated version)

The experiment presented on this page is called the “slightly more complicated version” because it builds on the experiment “oceanic overturning circulation (the easiest version)” here.

Background

One of the first concepts people hear about in the context of ocean and climate is the “great conveyor belt”. The great conveyor belt is a very simplified concept of the global ocean circulation, which is depicted as a single current that spans the world oceans (see Figure 1 below). In this simplified view of the global circulation, water flows as a warm, global surface current towards the North Atlantic, where it cools, sinks and finally returns southward and through all the world oceans near the bottom of the ocean. Water is transported back to the surface through mixing processes and starts over its journey again as a warm surface current. While in reality some part of the conveyor belt is wind-driven and many processes come to play together, a large part of the circulation can be explained by the water sinking due to cooling at high latitudes.

Conveyor_belt

Figure 1: The great conveyor belt. My sketch on top of a map from http://www.free-world-maps.com

This can be very easily represented in a demonstration or experiment.

Materials

What we need for this experiment:

  • 2 gel pads for sports injuries, one hot, one cold
  • red and blue food coloring
  • a clear plastic container to act as tank
  • a pipette or drinking straws to disperse drops of dye
  • dye crystals to show the circulation. Can also be drops of a different color dye.
Running the experiment

The container is filled with lukewarm water.  On the “poleward” end, we add the cold pad, the warm one at the “equatorward” end of the tank.

Blue dye is tripped on the cold pad to mark the cold water, red dye on the warm pad as a tracer for warm water.

overturning

Thermally-driven overturning circulation: Warm water flowing near the surface from the warm pad on the left towards the right, cold flow from the cool pad at the bottom right to left.

A circulation develops. If you drop dye crystals in the tank, the ribbon that formed gets deformed by the currents for yet another visualization of the flow field.

overturning2

Thermally-driven overturning circulation. In the middle of the tank you see a ribbon of dye, caused by falling dye crystals, being transformed by the currents in the tank.

Here is the video:

What observations to make

Besides the obvious observation, watching, there are a couple of things you can ask your audience to do.

For example, if they carefully slide their fingers up and down the side of the tank, they will feel the warm water near the surface and the cold water at the bottom.

If you have a clear straw, you can use it as plunging syphon to extract a “column” of water from the middle of the tank, showing again the stratification of red, clear, blue.

If you put little paper bits on the surface, you will see them moving with the surface current.

Can you come up with more?

Who can I do this experiment with?

Someone recently asked me whether I had ideas for experiments for her course in ocean sciences for non-majors. Since most of the experiments I’ve been showing on this blog were run in the context of Bachelor or Master oceanography-major courses, she didn’t think that the experiments were as easily transferable to other settings as I had claimed.

So here is proof: You can do pretty complex experiments with non-university level students. To prove my point, let’s go to a primary school.

IMG_3219

Me running the overturning experiment with a primary school class in 2012.

IMG_3214

The overturning experiment as seen by the teacher (2012).

Of course, you can adapt this experiment to different levels of prior knowledge. For example, in the primary school, I introduced this experiment by showing pictures of lions and penguins and other animals that the pupils knew live in warm or cold climates, and we talked about where those animals live. In the end this aimed at how temperatures are a lot colder at the poles than at the equator. This is the differential heating we need for this experiment to work. While this is something that I felt the need to talk about with the primary school kids, this can be assumed as a given with older students (or at least that is the assumption that I made).

With the university-level courses, one of the points that I made sure came up during the discussion are the limitations of this model. For example that we apply both heating and cooling over the full depth of the water column. How realistic is that? Or the fact that we heat at one end and cool at the other, rather than cooling on either end and heating in the middle?

Let me zoom in on something in the picture above.

IMG_3214_2

Curious features in the thermal conveyor experiment. Do you know what this is about?

Do you see these weird red filaments? Do you think they are a realistic part of the thermal circulation if it was scaled up to a global scale?

Of course not. What we see here is salt fingering. This is a process that is caused by the different diffusivities of heat and of the red dye. And while it is pretty large scale in our small tank, you cannot scale it up just like that when talking about the real ocean. And it is also really difficult to get rid of salt fingers for this experiment, in fact I haven’t yet managed. But I am open to suggestions! :-)

Another point that I would talk about with university-level students that I would probably not bring up with primary school kids (- although, why not if I had more time than just those 45 minutes per class?) is that ocean circulation is driven by more than just differential heating. Even when just considering the density-driven circulation, that is additionally influenced by changes in salinity. Put that together with wind-driven circulation and we are starting to talk about a whole new level of complicated…

But anyway. My point is that even primary school kids can benefit from doing this kind of experiments, even if what they take away from the experiments is not exactly the same as what older students would take away.

Discussion
As with every experiment, it is a lot easier for an “expert” to observe what he or she wants to observe, than for their students.
The left column in the figure above is taken from an instruction for educators and parents of primary school kids I wrote a while back. When taking the pictures I was aware that the quality in terms of signal-to-noise was not very good (and in fact people [i.e. my parents] even told me). In my defense: The pictures of this experiment I shared on this blog are all less noisy, and I even explicitly addressed and discussed some of the noise! But still, only when reading that article today I fully appreciated how difficult it might be to see the signal through the noise (especially when the speech bubbles in the picture don’t even point exactly to the right places!), and how distracting it probably is when I implicitly assume that students see the signal and even start discussing the noise more than the signal.

So what we see above are, in the left column, the pictures I originally shared in that manual. In the middle column, I’m showing what I see when I look at the pictures on the left. And then in the right column I’m drawing what people might be seeing when looking at that same experiment. No idea if that really is what students see, but looking at the pictures now, there is actually no reason why they should see what I see. See?
One indicator of the signal-to-noise ratio and of what students actually perceive as important can be found in the three little essays the primary school kids show in the picture above wrote after my visit in December 2012: Two out of the three explicitly mention that I used a yoghurt beaker as heating on the one end of the tank (while the third only refers to a beaker). Clearly that seems to have been a very important observation to them.
So what do we take away from this? I, for one, am going to make sure to pay more attention to the signal-to-noise ratio when showing demonstrations. And if there happens to be a lot of noise, I am going to make it a lot clearer which part of the signal is actual signal, and which is noise. Lesson learned.

P.S.: This text originally appeared on my website as a page. Due to upcoming restructuring of this website, I am reposting it as a blog post. This is the original version last modified on January 13th, 2016.

I might write things differently if I was writing them now, but I still like to keep my blog as archive of my thoughts.

Experiment: Oceanic overturning circulation (the easiest version)

“The easiest” in the title of this page is to show the contrast to a “slightly more complicated” version here.

Background

One of the first concepts people hear about in the context of ocean and climate is the “great conveyor belt”. The great conveyor belt is a very simplified concept of the global ocean circulation, which is depicted as a single current that spans the world oceans (see Figure 1 below). In this simplified view of the global circulation, water flows as a warm, global surface current towards the North Atlantic, where it cools, sinks and finally returns southward and through all the world oceans near the bottom of the ocean. Water is transported back to the surface through mixing processes and starts over its journey again as a warm surface current. While in reality some part of the conveyor belt is wind-driven and many processes come to play together, a large part of the circulation can be explained by the water sinking due to cooling at high latitudes.

Conveyor_belt

Figure 1: The great conveyor belt. My sketch on top of a map from http://www.free-world-maps.com (used with permission)

The experiment

Since the global conveyor belt is such a basic concept that we come across in many different contexts, it is very useful to have a good demonstration of what is happening in the world ocean. Plus demonstrations and experiments are always fun!

I here present a very simple experiment that can be used for many different purposes. In science outreach, for example on a fair or in a talk, to catch people’s attention and raise an interest in oceanography. In schools to do the same, or to connect the fascination of the ocean to school physics and talk about density, convection, heat. At university to do all of the above, as well as to practice writing lab reports, talk about the scientific method or the validity of simplifications in theoretical or physical models.

Materials needed

All we need to run this experiment is

  • a clear plastic container
  • lukewarm water
  • red and blue food dye
  • an ice cube tray and
  • access to a freezer.

Ideally we’d also have a thermos or some other kind of insulation to keep the ice cubes frozen until we start running the experiment. To prepare the experiment, all we need to do a half a day ahead is mix some blue food dye into the water that we put in the ice cube tray, and freeze the ice cubes.

Running the experiment

To run the experiment, we start out by filling our “tank” with lukewarm water. Let it settle for a bit. Now we decide for one end of your tank to be the “equator” end. There, we add some red food dye (see Figure 1).

overturning-ice-1

Figure 2: Tank with luke warm water. Red food dye added to the “warm” end of the tank.

Then we add the blue ice cubes to the “poleward” end of our tank (see Figure 3).

overturning-ice-2

Figure 3: Blue ice cubes melting at the poleward end of the tank. The cold melt water sinks to the bottom of the tank and then spreads “equatorward”.

The cold melt water from the ice cubes is denser than the lukewarm water in the tank and therefore sinks to the bottom of the tank where it spreads “equatorward”, pushing below the warmer water. This can be seen where the red water is pushed upwards and “poleward”.

Discussion

Of course, the processes at play here are not exactly the same as in the real ocean.

For one, deep water formation is NOT due to ice cubes melting in lukewarm water. In fact, melting of sea ice will in most cases not lead to any kind of sinking of water, since the melt water is fresh and the surrounding ocean water is salty and hence denser than the melt water. Cooling in the ocean happens through many processes at the surface of the ocean, like radiation into space and evaporation.

Heating is also represented in an extremely simplified way in this experiment. Heating in the ocean occurs mainly (with the negligible exception of thermal springs in the ocean) by radiative heating from the sun, and at the surface only. We “heat” throughout the whole depth of the ocean by filling the whole tank with lukewarm water.

Also, the mixing processes that, in the real ocean, bring deepwater back to the surface are not represented here at all. Our tank will eventually fill with a layer of cold water at the bottom (See Figure 4), and the circulation will stop once all the ice has melted.

overturning-ice-3

Figure 4: Blue ice cubes melting at the poleward end of the tank. The cold melt water sinks to the bottom of the tank and then spreads “equatorward”. Slowly, the tank fills with cold water.

Why use the experiment?

Even with all the simplifications described above, this experiment is a great first step in becoming intrigued by the ocean, and towards understanding ocean circulation. Seeing the melt water sink from the ice cubes is fascinating no matter how little interest one might have in the physics that cause it. Sliding a finger up and down the side of the tank lets you experience – feel! – how the temperature changes from warm near the surface to very cold near the bottom. Actually physically feeling this is a lot more impressive than just watching the experiment or even just being shown temperature sections of the ocean. And the experiment invites you to play: What if you added little pieces of paper on the water surface, would you see them move with the flow towards the cold end of the tank? Or if you dropped a dye crystal in the middle of the tank, would the dye ribbon that forms be deformed by the currents in the tank? And what if you added twice as many ice cubes, would the currents be twice as fast?

This is pretty much the easiest experiment you can imagine. If you are afraid of what food dye might do in the hands of your participants, you don’t even need to let them handle it themselves, even when they are working in small groups with individual tanks: just go around dripping the dye in and then add the dyed ice cubes yourself. While someone might still tip over a tank and spill the water, this has yet to happen to me. Especially since, before running the experiment, you will have pointed out that they need to make sure not to bang against the tables as to not disturb the experiment. And now apart from making sure that the ice cubes are frozen when you want to run this experiment, there is nothing that can go wrong. So why not try this experiment next time you want to talk about global ocean circulation?

Watch a video of the experiment here:

What would I do differently next time?

Next time, I would pay attention to which end of my tank will represent the equatorward and poleward side of the ocean. Not that it matters much, but in most graphics of sections through the North Atlantic, the northern end will be on the right side and the southern end on the left. If the experiment is set up the other way round (as on all pictures and movies above) you will need to remember to point it out (or even mark it on the tank with a sharpie or such).

Still scared of the hassle of running experiments?

And for all of you who hesitate doing awesome experiments because it looks like you need so much equipment: No you don’t. Here is a “making of” shot from how I did this experiment on my coffee table while sitting on my couch. The background is the back of an old calendar sheet, clipped to the back of a chair. And that’s it.

Screen shot 2015-11-02 at 3.41.24 PM

The setup for my experiment.

P.S.: This text originally appeared on my website as a page. Due to upcoming restructuring of this website, I am reposting it as a blog post. This is the original version last modified on November 4th, 2015.

I might write things differently if I was writing them now, but I still like to keep my blog as archive of my thoughts.

Experiment: Eddy in a jar

Rotating experiments in your kitchen.

Eddies, those large, rotating structures in the ocean, are pretty hard to imagine. Of course, you can see them on many different scales, so you can observe them for example in creeks, as shown below:

IMG_1266

Eddies in the Pinnau river, and their dark “shadows”.

If you can’t really spot them in the image above, check out this post for clues and a movie.

So how can you create eddies to observe their structure?

MVI_0698

Dye spiral caused by an eddy in a jar

I took a large cylindrical jar, filled it with water, stirred, let it settle down a little bit and then injected dye at the surface, radially outward from the center. Because the rotating body of water is slowed down by friction with the jar, the center spins faster than the outer water, and the dye streak gets deformed into a spiral. The sheet stays visible for a very long time, even as it gets wound up tighter and tighter. And you can see the whole eddy wobble a bit (or pulsate might be the more technical term) because I introduced turbulence when I stopped stirring.

Watch the movie below if you want to see more. Or even better: Go play yourself!

P.S.: This text originally appeared on my website as a page. Due to upcoming restructuring of this website, I am reposting it as a blog post. This is the original version last modified on November 27th, 2015.

I might write things differently if I was writing them now, but I still like to keep my blog as archive of my thoughts.

Experiment: Influence of stratification on mixing

A wind stress is applied to the surface of a stratified and a non-stratified tank to cause mixing.

This is a pretty impressive experiment to run if you have a lot of time, or to watch the time-lapse of if you don’t. The idea is that a density stratification will make mixing harder than it would be in the unstratified case, because more energy has to be used to break up the stratification.

To look at this, we ran two experiments, one after the other.

In the first one, we took a tank full of freshwater, added dye droplets and switched on a hair dryer, set to blow pretty much along the surface of the tank, to force mixing through the wind stress. After about a minute, the tank was fully mixed.

In the second experiment, we created a density stratification: salt water with approximately 35 psu, and freshwater. We then added the dye droplets. The droplets never penetrated into the salty layer but instead layered in at the interface between the two layers. (See how there are internal waves on the interface, which is why the dye seems to penetrate much deeper on the right? If you watch the movie at the bottom of this page, you see the internal wave very clearly) We then added the hair-dryer wind stress.

After a minute, the surface layer was well mixed, but there was no mixing penetrating into the bottom layer. (We added blue dye at some point, which makes the picture below a little confusing.) To fully mix the whole depth, the wind forcing ran for 86 minutes (and I am proud to report that my hair dryer survived this ordeal! Don’t leave this experiment on its own, not every hair dryer might make this without catching fire!).

Mixing in a non-stratified tank (left) and in a stratified tank (right). See the stop watch at the bottom of the panels for an impression of the time scales involved!

This is a great demonstration of how mixing is inhibited by stratification. We had expected to see a difference, but we were really surprised that the difference was so large. Of course, the stratification in our tank was pretty harsh, but still.

Watch a short movie below and a movie containing the full time lapse even further down!

P.S.: This text originally appeared on my website as a page. Due to upcoming restructuring of this website, I am reposting it as a blog post. This is the original version last modified on November 27th, 2015.

I might write things differently if I was writing them now, but I still like to keep my blog as archive of my thoughts.

Experiment: Ice cubes melting in fresh water and salt water

Explore how melting of ice cubes floating in water is influenced by the salinity of the water. Important oceanographic concepts like density and density driven currents are visualized and can be discussed on the basis of this experiment.

Context

Audience

This hands-on experiment is suited for many different audiences and can be used to achieve a wealth of different learning goals. Audience ranges from first-graders over undergraduates in physical oceanography to outreach activities with the general public. Depending on the audience, this activity can be embedded in very different contexts: For children, either in their physics teaching to motivate learning about concepts like density, or in the context of learning about the climate system and ocean circulation. For college/university students the activity can either be used in physics teaching to get a different view on density; in oceanography/Earth science to talk about ocean circulation and processes that are important there; to motivate the scientific process; or to practice writing lab reports (you can be sure that students will at some point be tasting the water to make sure they didn’t accidentally swap the salt water and fresh water cup – a great teachable moment for a) Never putting anything in your mouth in a laboratory setting, and b) Always documenting exactly what you are doing because stuff that you think you will definitely remember obviously isn’t remembered that clearly after all). For the general public, this is typically a stand-alone activity.

Skills and concepts that students must have mastered

It helps if the concept of density is known, but the experiment can also be used to introduce or deepen the understanding of the concept.

How the activity is situated in the course

I use this activity in different ways: a) as a simple in-class experiment that we use to discuss the scientific method, as well as what needs to be noted in lab journals and what makes a good lab report, or density-driven circulation; b) to engage non-majors or the general public in thinking about ocean circulation, what drives ocean currents, … in one-off presentations.

 

Goals

Content/concepts goals for this activity

Students learn about concepts that are important not only in physical oceanography, but in any physical or Earth science: density in general; density of water in particular, depending on the water’s temperature and salinity; how differences in density can drive currents both in the model and in the world ocean; how different processes acting at the same time can lead to unexpected results; how to model large scale processes in a simple experiment. After finishing the activity, they can formulate testable hypotheses, are able to reason based on density how a flow field will develop and they can compare the situations in the cups to the “real” ocean.

Higher order thinking skills goals for this activity

Students learn about and practice the use of the scientific method: formulation of hypotheses, testing, evaluating and reformulating.

Other skills goals for this activity

Students practice writing lab reports, making observations, working in groups.

 

Description and Teaching Materials

Materials

(per group of 2-4 students):

  • 1 clear plastic cup filled with room-temperature salt water (35psu or higher, i.e. 7 or more tea spoons of table salt per liter water), marked as salt water (optional)
  • 1 clear plastic cup filled with room-temperature fresh water, marked as fresh water (optional)
  • 2 ice cubes
  • liquid food dye either in drop bottle, with a pipette or with a straw as plunging syphon

Description

Before the experiment is started, students are asked to make a prediction which ice cube will melt faster, the one in salt water or the one in fresh water. Students discuss within their groups and commit to one hypothesis.
Students then place the ice cubes into the cups and start a stop watch/note the time. Students observe one of the ice cube melting faster than the other one. When it becomes obvious that one is indeed melting faster, a drop of food dye can be added on each of the ice cubes to color the melt water. Students take the time until each of the ice cubes has melted completely.

Discussion

The ice cube in the cup containing the fresh water will melt faster, because the (fresh) melt water is colder than the room-temperature fresh water in the cup. Hence its density is higher and it sinks to the bottom of the cup, being replaced by warmer waters at the ice cube. In contrast, the cold and fresh melt water in the salt water cup is less dense than the salt water, hence it forms a layer on top of the salt water and doesn’t induce a circulation like the one in the fresh water cup. The circulation is clearly visible as soon as the food dye is added: While in the freshwater case the whole water column changes color, only a thin meltwater layer on top of the salt water is colored (for clarification, see images in the presentation below)

 

Teaching Notes and Tips

Students usually assume that the ice cube in salt water will melt faster than the one in fresh water, “because salt is used to de-ice streets in winter”. Have students explicitly state their hypothesis (“the one in salt water will melt faster!”), so when they measure the time it takes the ice cubes to melt, they realize that their experiment does not support their hypothesis and start discussing why that is the case. (Elicit the misconception, so it can be confronted and resolved!)

My experience with this experiment is that all groups behave very consistently:

  • At least 80% of your audience will be very sure that the ice cube in salt water will melt faster than the one in fresh water. The other 20% will give the correct hypothesis, but only because they expect a trick question, and they will most likely not be able to come up with an explanation.
  • You can be 100% sure that at least in one group, someone will say “oh wait, which was the salt water again?” which hands you on a plate the opportunity to say “see — this is a great experiment to use when talking about why we need to write good documentations already while we are doing the experiment!”
  • You can also be 100% sure that in that group, someone will taste the water to make sure they know which cup contains the salt water. Which lets you say your “see — perfect experiment to talk about lab safety stuff! Never ever put things in your mouth in a lab!”
  • You can also be sure, that people come up with new experiments they want to try.
    • At EMSEA14, people asked what would happen if the ice cubes were held at the bottom of the beaker.
    • At a workshop on inquiry-based learning, people asked what the dye would do if there was no ice in the cups, just salt water and fresh water. Perfect opportunity to say “try! Then you’ll know! And btw — isn’t this experiment perfect to inspire the spirit of research (or however you would say that in English – “Forschergeist” is what I mean!). This is what you see in the pictures in this blogpost.

It is always a good idea to have plenty of spare ice cubes and salt/fresh water at room temperature ready so people can run the experiment again if they decide to either focus on something they didn’t observe well enough the first time round, or try a modified experiment like the ones described above.

A reviewer of this activity asked how easily students overcome the idea that water in the cup has to have just one temperature. In my experience this is not an issue at all – students keep “pointing” and thereby touching the cups, and in the thin-walled plastic cups I typically use the temperature gradient between “cold” melt water and “warm” salt water is easily felt. The (careful!) touching of the cups can also be explicitly encouraged.

Different ways to use this experiment

This experiment can be used in many different ways depending on the audience you are working with.

  • Demonstration: If you want to show this experiment rather than having students conduct it themselves, using colored ice cubes is the way to go (see experiment here). The dye focuses the observer’s attention on the melt water and makes it much easier to observe the experiment from a distance, on a screen or via a projector. Dying the ice cubes makes understanding much easier, but it also diminishes the feeling of exploration a lot – there is no mystery involved any more. And remember in order for demonstrations to increase the learning outcome, they need to be embedded in a larger didactical setting, including forming of hypotheses before the experiment is run and debriefing afterwards.
  • Structured activity: For an audience with little knowledge about physics, you might want to start with a very structured activity, much like the one described above. Students are handed (non-colored) ice cubes, cups with salt water and fresh water and are asked to make a prediction about which of the ice cubes is going to melt faster. Students test their hypothesis, find the results of the experiment in support with it or not, and we discuss. This is how I usually use this experiment in class (see discussion here).The advantage of using this approach is that students have clear instructions that they can easily follow. Depending on how observant the group is, instructions can be very detailed (“Start the stop watch when you put the ice cubes in the water. Write down the time when the first ice cube has melted completely, and which of the ice cubes it was. Write down the time when the second ice cube has melted completely. …”) or more open (“observe the ice cubes melting”).
  • Problem-solving activity: Depending on your goals with this experiment, you could also consider making it a problem-solving activity: You would hand out the materials and ask the students to design an experiment to figure out which of the cups contains fresh water and which salt water (no tasting, of course!). This is a very nice exercise and students learn a lot from designing the experiment themselves.
  • Open-ended investigation: In this case, students are handed the materials, knowing which cup contains fresh and salt water. But instead of being asked a specific question, they are told to use the materials to learn as much as they can about salt water, fresh water, temperature and density.As with the problem-solving exercise, this is a very time-intensive undertaking that does not seem feasible in the framework we are operating in. Also it is hard to predict what kind of experiments the students will come up with, and if they will learn what you want them to learn. On the other hand, students typically learn much more because they are free to explore and not bound by a specific instruction from you, so maybe give it a try?
  • Problem-based learning: This experiment is also very well suited in a Problem-Based Learning setting, both to work on the experiment itself or, as we did, to have instructors experience how problem-based learning works so they can use it in their own teaching later. Find a suggested case and a description of our experiences with it here.
  • Inquiry-based learning: Similarly as with Problem-Based Learning, this experiment can be used to let future instructors experience the method of inquiry-based learning from a student perspective. For my audience, people teaching in STEM, this is a nice case since it is close enough to their topics so they can easily make the transfer from this case to their own teaching, yet obscure enough that they really are learners in the situation.

Pro tip: If you are not quite sure how well your students will be able to cope with this experiment, prepare ice cubes dyed with food coloring and use them in a demonstration if students need more help seeing what is going on, or even let students work with colored ice cubes right from the start. If ice cubes and hence melt water are dyed right away, it becomes a lot easier to observe and deduct what is happening. Feel free to bring the photos or time lapse movie below as a backup, too!

dyed_ice_cubes_01

Dyed ice cubes about to be put into fresh water (left) and salt water (right)

dyed_ice_cubes_02

When the ice cubes start melting, it becomes very clear that they do so in different manners. In the left cup, the cold meltwater from the ice cube is denser than the lukewarm water in the cup. Hence it sinks to the bottom of the beaker and the water surrounding the ice cube is replaced by warmer water. On the right side, the lukewarm salt water is denser than the cold melt water, hence the cold meltwater floats on top, surrounding the ice cube which therefore melts more slowly than the one in the other cup.

dyed_ice_cubes_03

The ice cube in the fresh water cup (left) is almost completely gone and the water column is fairly mixed with melt water having sunk to the bottom of the beaker. The ice cube in the salt water cup (right) is still a lot bigger and a clear stratification is visible with the dyed meltwater on top of the salt water.

And here a time-lapse movie of the experiment.

Another way to look at the experiment: With a thermal imaging camera!

screen-shot-2017-06-11-at-17-12-29

Cold (dark purple) ice cubes held by warm (white-ish) fingers over room-temperature (orange) cups with water

screen-shot-2017-06-11-at-17-12-55

After a while, both cups show very different temperature distributions. The left one is still room temperature(-ish) on top and very cold at the bottom. The other one is very cold on top and warmer below.

screen-shot-2017-06-11-at-17-13-20

When you look in from the top, you see that in the left cup the ice has completely melted (and the melt water sunk to the bottom), whereas in the right cup there is still ice floating on top.

Assessment

Depending on the audience I use this experiment with, the learning goals are very different. Therefore, no one assessment strategy can be used for all different applications. Below, I am giving examples of what are possible ways to assess specific learning goals:

– Students apply the scientific process correctly: Look at how hypotheses are stated (“salt melts ice” is not a testable hypothesis, “similar-sized ice cubes will melt faster in salt water than in fresh water of the same temperature” is).

– Students are able to determine what kind of density-driven circulation will develop: Suggest modifications to the experiment (e.g. ice cubes are made from salt water, or ice cubes are held at the bottom of the cups while melting) and ask students to predict what the developing circulation will look like.

– Students can make the transfer from the flow field in the cup to the general ocean circulation: Let students compare the situation in the cup with different oceanic regions (the high Arctic, the Nordic Seas, …) and argue for which of those regions displays a similar circulation or what the differences are (in terms of salinity, temperature, and their influence on density).

In general, while students run the experiment, I walk around and listen to discussions or ask questions if students aren’t already discussing. Talking to students it becomes clear very quickly whether they understand the concept or not. Asking them to draw “what is happening in the cup” is a very useful indicator of how much they understand what is going on. If they draw something close to what is shown on slide 28 of the attached slide show, they have grasped the main points.

 

Equipment

Don’t worry, it is totally feasible to bring all the equipment you need with you to run the experiment anywhere you want. This is what we brought to EMSEA14 to run the workshop three times with 40 participants each:

EMSEA14_list

What we brought to EMSEA14 to run workshops on the ice cubes melting in fresh and salt water experiment

In one big grocery bag:

  • 4 ice cube trays
  • 4 ice cube bags (backup)
  • 2 thermos flasks (to store ice cubes)
  • 1 insulating carrier bag (left)
  • 4 empty 1.5l water bottles to mix & store salt water in
  • 1 tea spoon for measuring salt
  • 500g table salt
  • 21 clear plastic cups for experiments
  • 10 clear plastic cups to hand out ice cubes in
  • 11 straws (as pipettes)
  • 1 flask of food dye
  • 11 little cups with lids to hand out food dye in
  • nerves of steel (not shown :-))

And if you are my friend, you might also get the “ice cube special” — a pink bucket with all you will ever need to run the experiment! Below is what the ice cube experiment kit looks like that I made for Marisa, with labels and everything…

IMG_4202

An “ice cube experiment” kit that I made for a friend. Want one, too?

References and Resources

This activity has been discussed before, for example here:

I have also written about it a lot on my blog, see posts tagged “melting ice cubes experiment“.

P.S.: This text originally appeared on my website as a page. Due to upcoming restructuring of this website, I am reposting it as a blog post. This is the original version last modified on November 4th, 2015.

I might write things differently if I was writing them now, but I still like to keep my blog as archive of my thoughts.

A sketch of a learning sequence on fjord circulation experiments

I’ve been wanting to develop a good fjord circulation experiment for a long time now — I wasn’t happy with the one we used back when I was teaching in Bergen, and then 1.5 years ago I talked with Steffi and Ailin who took over the tank experiments in Bergen a while back and we wanted to do something about it, but it just never happened. Life, you know, and jobs with other foci…

But then when I couldn’t sleep, I decided that 4:15 in the morning is a very good time to sketch out how I would develop a learning sequence on fjord circulation. Let’s see how I feel about it at a more normal hour after some more sleep, but right now I am happy with it, and excited to flesh out the sketch a little more with actual instructions for experiments. Would you be interested in reading that? And where would you look for instructions like that (except for on my blog)? I am hoping to maybe publish it somewhere “official”…

Observing the “melting ice cubes” experiment with a thermal imaging camera

Remember the melting ice cube experiment? Great!

Experiment: Ice cubes melting in fresh water and salt water. By Mirjam S. Glessmer

If I had the chance to teach an intro to oceanography or some other class where I have time with students over a longer period (these days I am mostly giving one-off workshops), I would actually use the thermal imaging camera to make a different point with this experiment than the one I have usually recommended it for.
I would first do the classical experiment to talk about density-driven circulation. This could be done either using dye (levels of difficulty would be something like 1) easy: freeze dye into the ice cube. 2) medium: let them observe what happens with clear ice cubes and only add dye once they’ve realized that the fresh water ice cube is melting much faster, but have a hard time figuring out why. In this case, drop dye onto the melting ice cubes. 3) no dye at all, but let people focus on condensation pattern on the cups as well as shapes of the ice cubes. I tried that for the first time a couple of weeks ago and it worked really really well. I think that’s my favourite way of doing the experiment now!
After students have done that experiment and we have moved on to properties of seawater etc weeks later, I would bring the same experiment back when talking about how water is transparent to visible light, but not to all other wavelengths. Because students will likely assume that they will see the same kind of pattern that they saw with dye (or that they sketched when they drew the mechanism), but actually, unless the plume of dense water is flowing right along the edge of the cup, they won’t be able to see it because they really only see the temperature of the cup itself and can’t “look inside” the way they can with their eyes. So at first, I would assume, they’d be a bit bored and annoyed to be presented with the same experiment again, until they realize that now the point is a very different one. (Since I haven’t tried to use that experiment in that way, I am not quite sure how it will work, I think it would be important to either hold the melting ice cubes in the middle of the beaker. That way, there is no cold plume along the edge of the cup, and students see cold water appearing at the bottom of the cup “out of nowhere”. Alternatively, one could ask them to look at the cup from the side opposite to where the ice cube is (they always float to the edge somehow), but maybe that would be giving too much away already?). So now the point would be to explain why we can’t see the sinking plume on the thermal imaging camera, and dependency of transparency of sea water on wavelengths of light. This can lead to ocean color, remote sensing, camouflage colors of animals, all kinds of other stuff. I think that could actually be exciting! What do you think?

Investigating ocean currents in a rotating swimming pool

Reposting from Sci/Why “where Canadian children’s writers discuss science, words, and the eternal question – why?”
Have you ever wondered what happens when you put a 13-m-diameter swimming pool on a merry-go-round? Probably not. But I am here to tell you today about what happens when you do just that, and what you can learn from doing so.
 
I am part of an international group of scientists, doing research on currents in the ocean (and you can read more about who we are and what you do on our blog: http://skolelab.uib.no/blogg/darelius). Specifically, we are interested in how warm water is transported towards an Antarctic ice shelf. As you can imagine, Antarctica is not the easiest place to travel to and measure the ocean, especially not during winter. There are some observations of warm water reaching the ice shelf and contributing to melting the ice, but it is not known yet under what conditions this happens.
 
Why a pool?
 
In order to understand how water behaves in the ocean, we are reproducing real-world features that we suspect have an important influence on the current’s behavior, but in miniature, and inside our water-filled tank. Then we can modify those features and observe which parts of them actually determine how the water flows, and which parts are not as important. In our case, we are changing the miniature coastline of Antarctica to see what makes the current turn and flow into a canyon instead of just going straight ahead.
 
Why rotation?
 
We need to rotate the tank to represent the Earth’s rotation. This is because the Earth’s rotation influences all large-scale movements on Earth, including ocean currents: Moving objects get deflected to their left on the Southern Hemisphere. Below is a short video of the rotating, empty tank, to show you what happens when you roll a ball in the rotating tank: It does not go straight ahead but just curves to the side!
 
Before Nadine, the scientist shown in the video, climbed into the tank, you saw her walking alongside it. Even though the tank was turning very slowly (only one rotation per 50 seconds), she had to walk quite fast to keep up! This is how fast we need to spin the tank in order to have it rotate at the right speed for the size of our Antarctica.
How does it all work?
There is only one tank of this size — 13 meter diameter! — in the world, and it is situated in Grenoble, France. Researchers from all over the world travel to France to do their experiments in this tank for a couple of weeks each. In the gif below, you see the tank rotating: First, you see an office moving past you (yes, there are several floors above the water, including the first one with an office, computers, desks, chairs and all! That’s where we are during experiments, rotating with the tank) and then you can see the water below, lit in bright green.
Rotating the tank

Rotating the tank

There is a huge amount of effort and money going into running research facilities like this, and everybody working with the tank needs to be highly specialized in their training.
What do experiments look like?
When there is water in the tank, we need some special tricks to show how the water is actually moving inside the tank. This is done by seeding particles, tiny plastic beads, into the water and lighting them with a laser. Then special cameras take pictures of the particles and using complicated calculations, we can figure out exactly how the currents are moving. Below, you see a gif of one of our experiments: The current starts coming in from the right side of the image, flowing along our model Antarctica, and then some of it turns into the canyon, while most of it just goes straight ahead.
Currents flowing around "Antarctica"

Currents flowing around “Antarctica”

Depending on the shape of our Antarctica, sometimes all the water turns into the canyon, or sometimes all of it goes straight ahead.
What have we learned?
That’s a difficult question! We are still in the middle of doing our experiments, and the tricky part with research is that doing the experiments (even though that can be a huge undertaking as you see when you look at what a huge structure our tank is, or what enormous effort it requires to go to Antarctica with a research ship) is only a tiny step in the whole process. Nadine, who you saw in the movie above, is one of several people who will work on the data we are currently gathering for the next four years! But even though we are not finished with our research, there are definitely things we have learned. For example, the length of Antarctica’s coast line that the current flows along before the canyon interrupts its flow is very important: The shorter it is, the larger the part of the current that turns into the canyon. How all our individual observations will fit together in a larger picture, however, will still take months and years of work to figure out.
Where can I learn more about this?
If you have any questions, we would love to hear from you! We are hosting an “Ask Me Anything” event on October 18th (link here: https://oceanama.com/hi-i-am-mirjam-we-are-investigating-ocean-currents-in-a-13-m-diameter-455228/ but you can also leave questions on our Facebook page: https://www.facebook.com/EDareliusAndTeam/ or directly on our blog: https://skolelab.uib.no/blogg/darelius/)

Of a pool that sits on a merry-go-round and how we use it to investigate ocean circulation in Antarctica

You know I like tank experiments, but what I am lucky enough to witness right now is NOTHING compared to even my wildest dreams. Remember all the rotating experiments we did with this rotating table back in Bergen?

IMG_5814

Those were awesome, no question about that. But the rotating tank I am at now? 13 meters diameter.

Yes, you read that correctly. 13 METERS DIAMETER!

I’m lucky enough to be involved in Elin Darelius & team’s research project on topographically steered currents in Antarctica, and I will be blogging on her blog about it:

Follow the blog, or like us on Facebook!

In any case, don’t miss the opportunity to see what is going on in a tank this size:

2017-09-07-08-58-42

Yes, they are both INSIDE the tank. Elin (on the left) is sitting on the tank’s floor, Nadine (on the right) is climbing on the topography representing Antarctica. For more details, head over to the blog!