Category Archives: observation

Submerged hydraulic jump – observing hydrodynamic phenomena in real life

Hydraulic jumps, especially submerged ones, are a very theoretical concept for many students, one that occurs in a lab experiment if they are lucky, but more likely only seems to exists in videos, drawings, and text books. But we can observe them all the time if we know what we are looking for! They don’t only occur in hard-to-see places like the Denmark Strait (for you oceanographers) or inside some big plant, mixing in one chemical or another (for you engineers), they are everywhere!

So. Submerged hydraulic jumps. You don’t think about them for years and years, then one day a friend (Hi, Sindre!) asks about them and the next day you come across this:

IMG_3266

A tiny waterfall in Schleswig

A tiny waterfall that not only shows a beautiful submerged hydraulic jump, but provides extra entertainment in the form of two empty bottles caught up in the return flow above the submerged hydraulic jump:

IMG_3272

Litter caught up in the return flow above a submerged hydraulic jump

You should watch the video, it is really entertaining!

So what is going on here? Below a sketch: Water from the reservoir (A) flows down over a sill. It actually doesn’t flow, but it shoots (B), meaning that it flows faster than waves can propagate. Any wave in the flow that would normally propagate in all directions now cannot propagate upstream any more and is just flushed downstream. At (C), the flow has slowed down enough again that wave speed is the same as flow speed, we are at the hydraulic jump. In this case it is submerged – meaning that it occurs below the water’s surface. We can also think of non-submerged hydraulic jumps – see for example here. But what also happens with submerged hydraulic jumps is that the water jet shooting down the slope is so fast that it entrains water from outside the jet and pulls it down with it. This water has to come from somewhere, so we get a return flow (D). And this is exactly where the bottles are caught: In the flow that goes back towards the jet shooting down the slope.

Schleswig_hydraulic_jump

Sketch of the submerged hydraulic jump. A: reservoir. B: water shooting down the slope. C: hydraulic jump. D: turbulent return flow.

When the bottles come too close to the jet, they get pulled under water and then “jump” because they are too buoyant to actually sink. They might jump away a little from the jet, but as you see in the movie, the return flow reaches out quite a bit from where the jet enters the water, trapping the bottles.

This is actually what makes man-made waterfalls so dangerous: You saw in the movie that the return flow pattern is very similar over the whole width of the “waterfall”. So anything trapped in there will have a really hard time getting out. If either the sill or the slope were a little more irregular, it might break up the symmetry and allow things (and animals or people) to get out more easily. Of course, in this case the drop isn’t very high, but imagine a larger weir. Not fun to get caught in the return flow there!

Talking to my Norwegian friends about these things and especially using movies from my reality to illustrate concepts always makes me want to apologize for how tiny our waterfalls are, how in the middle of a city everything is, how much litter there is everywhere, how regulated even the tiniest streams around here are. But then I realize that it is actually really cool that even in the middle of the city we can spot all this. You don’t need the wide open, pristine nature to get yourself – and your students! – excited about oceanographic phenomena!

Jan Mayen picture dump

I’ve been thinking about that one research cruise in 2012 (Cruise webpage: “Greenland’s frozen coast”) where we passed Jan Mayen and had the chance to see the amazing coast line and glaciers. This post is basically a picture dump from that day. Enjoy!

When we approached Jan Mayen, the first thing we saw were Kelvin Helmholtz instabilities – breaking atmospheric waves.

Coming closer, we saw fog spilling down the coast.

Screen shot 2014-07-18 at 2.53.42 PM

Fog spilling down the coast of Jan Mayen

And then: glaciers!

Screen shot 2014-07-18 at 2.57.56 PM

Glacier on Jan Mayen

Screen shot 2014-07-18 at 2.57.28 PM

Glacier on Jan Mayen

Screen shot 2014-07-18 at 2.57.16 PM

Glacier on Jan Mayen

For a while we had a huge flock of birds accompanying the boat. Quite an eerie feeling!

I don’t miss the kind of work I used to do in oceanography. It was fun, but I am even happier with what I am doing now. But I do miss going on cruises!

Why does the sun have to be a lot further from us than the moon? A deduction.

Remember the hands-on demo of the phase of the moon?

Mondphase

In both pictures: Model of the moon between my fingers on the left, and moon in the background on the right. See how the lit and dark sides of both spheres are in the same position?

Holding a sphere up in the sunlight in the direction of the moon, the sphere will show the same phase as does the moon. Of course it has to, because the sun is so far away that its rays hitting the moon and the ones hitting the sphere are pretty much parallel.

If the sun wasn’t so far away, what would we see?

Schematic of how the Earth, your little sphere you are holding up in the direction of the moon (marked X) and the Moon would be lit if the Sun was not very far away (left) and very far away from Earth and Moon. See how the phase of the moon differs from that of your little sphere when the sun is “close”?

So the only way we can explain that the lit and dark sides of the sphere and the moon are the same is that the light lighting both of them comes in parallel, which can only be the case of the sun is very very very far away compared to the distance of earth, sphere and moon.

Isn’t that a nice little thought experiment?

As frost starts melting, and the roof is getting dry, oh! The sun is up.

My office looks out directly onto the roof of our main lecture theatre, and it is fascinating how much you can observe just by looking out of a window and onto a roof.

Below is a picture of one of the first cold mornings we had this year. As the sun rose, more and more of the roof was lit and the frost melted away. Can you see where the shadow used to be just minutes ago from the shape of the still-frozen frost?

IMG_3109

 

Some time later, the first corner was completely dry, while other parts of the roof were still wet, the only-recently-lit parts of the roof still had frost n them, and some parts of the roof were still frosty in the shadows.

IMG_3113

I really enjoy making random observations that I bet most people wouldn’t even notice, but I take pictures of and write a haiku about. Good thing I have my blog :-)

Granular convection

What is wrong with this picture?

IMG_3103

Random wall somewhere between Mölln and Hamburg

Don’t you guys make your parents stop the car when you drive by newly built walls in random villages somewhere when they are a perfect example of what the Paranuss-Effekt (Brazil nut effect, or granular convection, for all you non-german-speakers) does NOT look like?

For comparison, this is what it SHOULD look like:

2015-10-13 20.25.37

My emergency snacks. Why is it always so hard to get the sunflower seeds out of a jar of mixed nuts?

Yep. Granular convection!

The difference between secondary rainbows and double rainbows

More reflection or more rain?

Ha, aren’t you enjoying talking about optics again?

Sometimes you see two rainbows that both have red on the outside and blue on the inside. And according to my post on secondary rainbows, that should not be the case. Yet is has been observed. Why?

Screen shot 2015-06-07 at 8.09.47 PM

Rainbow and secondary rainbow, seen at Heathrow Airport. Picture by my friend F.

As you remember, secondary rainbows form outside the primary rainbows because the light is reflected twice inside the raindrop rather than only once as in the case of a primary rainbow. But that second rainbow with red on the outer rim and blue on the inner is formed differently.

Until now we’ve assumed that all the rainbows appear on the same rain front. This is not the case for the rainbow we are talking about here – it is formed on a second rain front behind the first one. So the path of light within rain drops of both rainbows on both fronts is similar, with light being only reflected once for each rainbow.

When you google double rainbows, you sometimes find pictures of two rainbows, both with red on the outer rim, nicely separated from each other. And when you see those pictures, you can be pretty sure that they’ve been photoshopped. Double rainbows of the kind we are talking about here overlap, and usually you see one full rainbow with all its colors, and then a slightly smaller rainbow with only green, blue and purple peeking out:

Screen shot 2014-07-13 at 3.34.19 PM

If you look closely, there is a green-and-purple band on the inside of the complete rainbow. Double rainbow!

Sun dogs

Recently spotted: sun dogs, a special form of halo! Or rather sun dog (singular), since there was only one to be seen and not a second one at equal distance from the sun but on its opposite side.

IMG_3096

Sun dog spotted somewhere between Mölln and Hamburg

These pictures are exactly as my camera took them without any filters or color enhancement or anything. Isn’t it weird that we appeared to be the only car stopping every couple of minutes to watch while everybody just continued driving?

IMG_3106_2

Sun dog spotted somewhere between Mölln and Hamburg

Raindrops on water

I’ve been trying to take good pictures of drops falling on water for a while now, but somehow it always ends up meh-ish. These kind of situations look so pretty when you are watching, but then pictures never do them justice.IMG_2919

But then my mom sent me the picture below. Doesn’t it look like an impressionist painting?WP_20140421_007a1

And zooming out you might be surprised that the lily pond is actually pretty small:WP_20140421_007But this picture has inspired me to set up a dripper so that I have full control over the conditions, and take pictures of drops falling on water. One day, that is – right now I’m pretty comfy on my couch :-)

 

Why is the bottom of the other shoreline cut off?

My dad keeps asking me about a claim I made in my post about the curvature of the Earth: That looking at sea level across a 500 m wide part of a lake, we should be missing the bottom 20 cm of ships moored on the other side. So to shut him up, here are the calculations.

First: This is what we assume:

  • The Earth is round.
  • Its radius is 6.371 km.
  • We can actually see in a straight line and the light isn’t bent by weird things in the air or other processes.

This gives us this situation:

We are situated at position x right at water level. We look out tangentially along b, so there is a right angle between the radius of the Earth, a, and b. Side c of the triangle we are looking at consists of c2 (which is equal to a, the radius of the Earth) and c1, which we are looking for: The height below which we cannot see from position x.

2015-09-26 18.14.27

Calculating how much we cannot see at a given distance looking at water level.

We know a to be 6,371 km and b is 0.5 km. Now we just need to put everything into Pythagoras’ theorem, solve for c1 and we are done!

2015-09-26 18.31.22

Calculating how much we cannot see at a given distance looking at water level. Are you sure you really want to look at this?

Turns out we find c1 as 19.6 cm. Which is pretty close to the 20 cm I claimed last time, right? Everybody happy now? If you want to look at a more realistic and less simplified calculation – go do it yourself! :-)