Alles andere als trockene Theorie (Repost)

Unser “DryTheory2JuicyReality” Projekt wurde durch den PerLe-Fonds für Lehrinnovation gefördert. Hier ist ein Repost eines Beitrages, den ich für den Blog “Einfach gute Lehre” geschrieben habe.

„Meeresströmungen im Wassertank“: Lehre, die Wissenschaft begreifbar macht

Über eine Lehrinnovation, die auf Kleingruppenarbeit und „hands-on“-Praxiselemente setzte – und was in Zeiten von Covid-19 daraus wurde.

In der Lehrveranstaltung „Atmosphären- und Ozeandynamik” im Bachelorstudiengang Physik des Erdsystems wird das theoretische Grundgerüst zum Verständnis der globalen Bewegung von Luft- und Wassermassen erarbeitet, welches zum Beispiel Wetter- und Klimavorhersagen ermöglicht.

Vor der Lehrinnovation von Dr. Torge Martin (GEOMAR) und Dr. Mirjam Gleßmer (fascinocean) geschah dies vorwiegend theoretisch auf Papier und an der Tafel. Die Verknüpfung der Theorie mit beobachtbaren Phänomenen der realen Welt kam dabei oft zu kurz. Um die Theorie begreifbar zu machen, haben wir praktische Experimente in rotierenden Wassertanks und am Computer eingebettet. Diese werden von den Studierenden gemeinsam durchgeführt und das Verständnis durch in Gruppenarbeit erarbeitete Blogposts vertieft. So zumindest im ersten Semester der zweisemestrigen Lehrinnovation…

Das erste Semester – der Plan geht auf

Schon in Vorbereitung der Antragstellung bei PerLe konnten wir nicht länger warten – wir mussten uns einfach privat einen rotierenden Tank für zuhause anschaffen und die Experimente schon mal probieren! Was normalerweise viele Hundert Euro kostet, ist Dank der Bauanleitung des DIYnamics Teams und der Verwendung einfachster Bauteile (wie zum Beispiel eines LEGO Motors) auf einmal erschwinglich. Und das Wissen, dass eventuelle Fehler nicht furchtbar teuer werden, lässt uns – und auch unsere Studierenden – viel unbeschwerter und kreativer experimentieren!

Rotierende Tankexperimente durchzuführen ist zeitaufwendig: Bis der gesamte Wasserkörper in gleichmäßiger Drehung ist und die Durchführung des eigentlichen Experimentes starten kann, vergehen schon mal 30 Minuten. Die Finanzierung unseres Lehrinnovationsprojektes durch PerLe ermöglichte uns, vier rotierende Tanks anzuschaffen – genug, dass Studierende in Kleingruppen experimentieren können und so vier Experimente gleichzeitig vorbereitet und je nach Anwendung direkt oder nacheinander durchgeführt werden können. So können Entscheidungen über Parameter individuell in den Gruppen oder gemeinsam besprochen und getroffen. Im Seminarraum entsteht so eine angeregte Diskussion über Effekte und Theorie, wie sie zuvor durch Vorrechnen an der Tafel nie entstand.  Und noch etwas haben wir gemeinsam erfahren: Bloß weil zwei Gruppen die gleichen Parameter ausgewählt haben, werden zwei Experimente noch lange nicht gleich aussehen! Diese Erfahrungen zu machen und zu diskutieren war sehr wertvoll und nur durch die vier parallellaufenden Tanks möglich.

Dr. Torge Martin und die Studierenden seines Kurses zur „Atmosphären- und Ozeandynamik” diskutieren ein rotierendes Tankexperiment, das von einer Gruppe vorgeführt wird.

Der zweite Aspekt unserer Lehrinnovation – frei nach dem Motto „Lernen durch Lehren“ – war ein Kurs zum populärwissenschaftlichen Schreiben, den Dr. Yasmin Appelhans durchgeführt hat. Die unglaublich kreativen Ergebnisse kann man auf unserem Blog „TeachingOceanScience“ bewundern! Es sei nur ein Beispiel herausgehoben: der beeindruckende Comic von Johanna Knauf. In dem Comic behandelt Johanna nicht nur fachlichen Inhalte, sondern hebt auch hervor, dass wir auf Lehrenden- wie Studierenden-Seite die Lehrinnovation mit Enthusiasmus und Spaß – und ganz viel Spielen! – durchgeführt haben.

Ein Bild aus dem Comic der Studentin Johanna Knauf, das zeigt, dass auch in der Wahrnehmung der Studierenden die beiden Lehrenden mit Enthusiasmus und Spaß bei der Sache waren.

Unser inoffizielles Motto „Man sollte einfach viel mehr spielen!“ haben wir sogar offiziell und zum Titel eines Seminars gemacht — natürlich immer unter dem Verständnis, dass „spielen“ die Art des explorativen, kreativen Herangehens an neue Fragestellungen bedeutet und sich nicht nur auf die LEGO-Bauteile beschränkt, bei dem wir alle Kolleg*innen des Instituts eingeladen haben, nach einer sehr kurzen Einführung zu den möglichen Versuchen einfach selbst mal mit unseren vier rotierenden Tanks zu „spielen“. Und wie das angenommen wurde? So dass wir den Hörsaal erst unter viel Gegrummel geräumt haben, als die nächste Lehrende nun aber wirklich anfangen wollte!

Auf vier rotierenden Tanks werden durch Studierende im Forschungsseminar unter großem Anklang vier unterschiedliche Experimente durchgeführt.

Alles Feedback, das wir bekamen, war also uneingeschränkt positiv. Doch dann kam Covid-19.

Das zweite Semester – hands-on und digital

Was tun, wenn auf ein Mal genau der enge Kontakt zwischen Studierenden, das gemeinsame Spielen und Beobachten, die das Herzstück unserer Lehrinnovation waren, nicht mehr möglich sind und alle Lehre digital stattfindet? Idealerweise hätten wir allen Studierenden einen eigenen rotierenden Tank zur Verfügung gestellt, aber das ging natürlich nicht. Aber da war doch ein privater Tank irgendwo zuhause…?

Dr. Martin verdeutlicht am Vergleich des rotierenden Experiments mit dem nicht-rotierenden Fall, welchen Einfluss die Erdrotation auf Meeresströmungen und atmosphärische Winde hat.

Der Einfluss der Erdrotation auf Meeresströmungen und atmosphärische Winde ist nicht gerade intuitiv. Um diesen gut zu verstehen, ist es oft hilfreich, ihn direkt mit dem analogen nicht-rotierenden Experiment zu vergleichen. Und so gelang es uns, auch in der virtuellen Lehre die hands-on Komponente zu erhalten: Die Studierenden führten bei sich zuhause die einfachen, nicht-rotierenden Fälle durch, und für die rotierenden Experimente kamen sie kurzerhand virtuell in Dr. Gleßmers Küche.

Abbildung 5: Ferngesteuerte Tankexperimente: In der Küche von Dr. Gleßmer steht der rotierende Tank, der mit zwei Endgeräten, die ihn von der Seite und von oben zeigen, an einer Zoom-Konferenz mit Dr. Martin und den Studierenden teilnimmt. Auf Zuruf kann Dr. Gleßmer jetzt Parameter verändern und die Studierenden können den Effekt aus der ersten Reihe beobachten und in der Konferenz diskutieren.

Bei dieser virtuellen Exkursion konnten Studierende durch Zuruf direkt das rotierende Experiment beeinflussen. Über zwei Endgeräte konnten sie das Experiment von der Seite und von oben beobachten und die Ergebnisse mit ihren eigenen, nicht-rotierenden Experimenten vergleichen. Als Backup, Vor- und Nachbereitung haben wir die Experimente mit dem gleichen Setup gefilmt und online zur Verfügung gestellt.

Abbildung 6: Dr. Gleßmer zeigt in diesem Video den Einfluss von Rotation auf Turbulenz (links im Bild der rotierende Tank in Seiten- und Aufsicht, rechts der nicht-rotierende Fall)

Unser Fazit? Für eine spontane Lösung ist uns das ziemlich gut geglückt. Auch hier steht am Ende die Erfahrung, dass es für einige Studierende eine wichtige, in der Vergangenheit oftmals vernachlässigte Komponente ist, Theorie tatsächlich „begreifen“ zu können. Mit einfachsten Mitteln lässt sich zuhause zumindest die Motivation für die nächste online Vorlesung deutlich steigern. Aber wir freuen uns auf die Zeiten, wenn wir mit unseren Studierenden wieder gemeinsam in einem Raum experimentieren können!

7 years of blogging! Celebratory wave watching with A LOT OF #friendlywaves

It doesn’t feel like it, but today marks the 7-year-anniversary of my first blog post on my “Adventures in Oceanography and Teaching”! To celebrate, I sent out this call to action (and please feel free to respond, no matter when you are reading this):

Below, I am sharing the pictures that people sent me plus my thoughts on them, newest on top. Pictures that reached me after August 28th 2020 will be posted in follow-up posts! (Keep them coming, I love it!)

23:58 — Kristina

Oooh, I love the internal waves on the interface between the milky part of the coffee and the not-yet-milky part! Looking at them moving very slowly always feels like being caught in slow motion, when of course the phase speed has to be very slow because of reduced gravity

21:55 — Phil (San Francisco)

Ooooh, this is awesome! Phil writes “photo of an awesome phenomenon that I took just before landing at SFO. San Mateo Bridge, San Francisco Bay on an evidently quickly rising tide!” and I am love the vortex streets! Count 4 pylons up from the bottom — that’s such a nice and clear von Kármán vortex street, absolutely beautiful! And then the bottom one does seem to show som shear instability. Now. In some spots vortex streets develop, while in others they don’t. But why?

21:06 — Clark (Bay of Fundy)

Clark wrote an entire thread explaining this awesome observation in the Bay of Fundy. You should totally check out the whole thread & explanations on Twitter, but I had to share this video so you can see what an exciting situation it is!

20:51 — Elin (Bergen)

Oh, nice one! Lots of tiny air bubbles in a vase or jug filled with water. Now. Is the line crossing through the water level? It kinda looks like it at first glance, because it seems to show a meniscus. On the other hand, there are bubbles sitting above that line, and they don’t look qualitatively different from the ones “under water”, so that seems unlikely. But then light seems to be refracted substantially differently above and below that line, so maybe we are looking at the water surface at some weird angle? Intuitively I would say that we are looking in from underneath the water level, but see the water line on the opposite side of the vessel. But that doesn’t seem to make sense with the (most likely level) table top? I will have to think about this some more!

18:14 — Simone (Hamburg)

How beautiful — in this drop we see the tip of the leaf it is hanging on pointing uo from the lower end of the drop! Nice example of how drops act as lenses and show us the world upside-down!

15:43 — Dong

Oh! Nice long waves coming in from far offshore. From the shape of the wave profiles I would guess that this was taken close to shore in shallow-ish water. This seems to be confirmed by the waves changing direction from further away coming towards us, which would indicate that the depth is changing over that distance

Unfortunately I could only screenshot that gif, check it out in the original tweet! What I find fascinating here is how there are two waves breaking offshore running towards us, but then there are several wave crests even closer to us that are still distinct and pointy (so the waves clearly didn’t loose all their energy breaking), but not breaking. I think there must be a shallow area where those two breaking waves are, making them break, and then deeper water again so that they are only temporarily tripping up and breaking, but then propagating further towards the shore without too much of an interruption

15:18 — Nena (Bodensee)

Oh, waves and a piece of driftwood! I wonder if it’s floating, it looks like it’s grounded. Otherwise I’d expect it to move with the waves, creating a dipole pattern when the ends take turns coming further out and then sinking deeper into the water.

And now a larger wave, breaking as it reaches the shore and also washing over the driftwood. I love how the water that came washing over the driftwood “in one piece” then disintegrates into drops when it falls down the other side!

15:13 — Jeffrey (Boulder)

Wow, this video is super tricky! Please check it out — volume up!

At first, I thought that the periodicity was set by eddies shedding periodically after water had washed over the obstacle. But after about the 50th time I looked at the video, the obstacle (is it driftwood?) seemed to start moving. If it is actually moving, the periodicity makes sense: The wood is trapped in place (you see that on the far side of the river) but it can move a little. It’s bopping on the water, floating at whatever height the waterlevel is at, but at the same time acting as a dam and trapping water on its upstream side, thus influencing the waterlevel. So this is basically a recharge-discharge oscillator. Maybe. Or maybe not. Any ideas, anyone? This is really tricky!

12:38pm — Gabriela (Lüneburg)

I would be so jealous of those kids playing with the locks and weirs and water channels if they weren’t my adorable nieces. Now I just can’t wait to go visit & play with this really cool toy!

11:49am — Gabriela (Lüneburg)

Somehow raindrop photography seems to be the topic of the day today? Here we see really well how a drop shows us an upside-down image of the world. See the sky at the bottom and the shed at the top, with the wine branches in the middle?

11:39am — Gabriela (Lüneburg)

Oh, a rain barrel! I think someone touched the side (possibly kicked it) so we get waves radiating from the outside in. Could also be that someone moved the ropes, but I would expect shorter wavelength waves then

This would be sooo difficult to interpret if I didn’t have inside knowlege: There are rocks hanging at the end of those strings to keep them in the center of the barrel, to guide the rain water in. What happened here is that someone pulled one of the strings to the side and let go of it. We see that the rock that was lifted when the rope was pulled out, is pulling the rope down again. That’s why the rope still has this weird bow shape, and that’s why we get kinda a wake where the rope moved from the outside of the barrel towards the center. All the other smaller ring waves are either drops that fell from the wet rope, or the ones that are centered around the other rope are caused by that rope vibrating because it’s attached to the first rope somewhere up on top

Here, my niece is demonstrating how to make wakes by swinging weighted ropes through water

Same as above, but we nicely see the capillary waves that radiate away

11:20am — Katharina (Hamburg)

I guess I said I liked a challenge… Screenshots with comments below! And check out the sound in the movie! Volume up!

At first I thought this was going to be a movie with pretty rainbows and reflections — water can create awesome prism effects!

But no! She dropped a fizzy tablet in! Here we see the first gas bubbles bubbling up to the surface. The bubbles get bigger the closer they get to the surface, because the pressure decreases and they can therefore expand

Already a lot of bubbling and fizzing going on! On the right side of the glass we can see that the gas bubbles are released in bursts. We also hear that when listening to the sound in the movie. Also funny to see how the bubbles raise in the middle of the glass and the flow is really turbulent there. Only at the rim can bubbles persist without bursting for a little while

The tablet has almost completely dissolved now, and what little is left has floated up to the surface (upper right). Btw, that fizzing sound is not really made by the water itself, it’s all the tiny bubbles bursting. Since sound are pressure waves and bursting bubbles radiate pressure, as the gas inside of the bubble is at higher pressure than the surrounding air and expands until the bubble bursts and then the pressure equilibrates. That’s what we hear!

10:46am — Astrid (Hamburg)

Astrid has a great taste! Both in her choice of reading materials (my blog!) and in her taste of coffee, with the beautiful swirls of milk in it. Here we see that molecular diffusion is slow when it has to physically swap whole molecules around — the swirls of milk are still distinguishable in the coffee (she clearly didn’t stir). But I would be prepared to bet that the milk has the same temperature as the coffee, because molecular diffusion of heat is fast (and also because she likes her coffee hot, the milk most likely went in hot)!

10:38am — Sara (Klein Waabs)

Phew, this is a difficult one! The first structures that jump at me (besides the wind surfers, of course) are the shadow of the sail (from the board to the left) and the reflection of the sail (from the board towards us), which are kind of distracting from the waves. And the waves are kind of messy, there is no clear direction visible. There is some wind causing the waves. Not very much, but enough to make it difficult to distinguish wind waves from others caused e.g. by the surf board.

Now we have some wind! We see waves breaking at the stones offshore (and looking at how high the foam is flying, those waves were not too shabby!), but we don’t actually see a lot of those waves because everything from the wave breakers towards us is in the lee and thus sheltered. But we see some long waves that have propagated into this bay that break on the beach

10:37am — Florian (all over the world!)

Cabo da Roca in Portugal; westernmost point of the continent. This is beautiful! Waves from far offshore arrive at the beach. As they reach the shallower water, all of their properties except their frequency change: Their wavelength gets shorter, their height larger, their steepness larger. When one part of a crest is in shallower water than the rest, the crest bends towards the shallower areas. The breaking waves create a lot of foam, indicating that there was some biological activity creating a surface film

Falesia Beach, Algarve. Oh how beautiful! Breaking waves on the other side of those rocks, and only the longer waves make it into the calm, sheltered space this side of the rocks. Interesting example of a filter that only lets long wavelength come through!

Algarve-Coast. What strikes me here are the beautiful colors! Near the beach, we can look into the water and see the sandy sea floor as well as some larger rocks, that seem to be partly overgrown. The further we look offshore, the bluer the sea gets, because at shallower angles the reflection from the sky increases, until at a critical angle, we only see reflections and can’t look into the water any more.The different shades of blue in those areas show where breezes rough up the water, darker areas are those where there is currently more wind and the surface roughness is higher. Another thing I am noticing are the waves that the person in the water makes — circles around them.

Timmendorfer Strand, Baltic Sea coast. On a windy day! We can see that from the whay the waves are breaking, not only right at the beach and in areas where the water is shallower, but also in smaller, more random bursts. Also waves don’t have the same regular shape as they would have had this wave field traveled to the beach from far away, it seems to be somewhat regional. Also love how far the waves run up the beach (as you see from the large area covered in foam). This must have been a fun day to play at the beach!

Maschsee Hanover — I love how you see different things in this picture: First, how stuff floating in the water dampens out the waves (see how there are a lot more waves behind the plants floating in the water than on this side). And then the wakes that this cute family of swans is making as they are swimming towards us!

9:09am — Gabriela (Lüneburg)

Honestly, what jumps at me most is my ADORABLE niece who’s saying Kaffefoto (“coffee pic”). But then there is also the puzzle of why the coffe coming out of the machine looks so much lighter than when it’s in the mug (underneath the foam)? Well, the foam is the clue here! When there are a lot of airbubbles in the coffee still, they reflect light differently (i.e. from all different directions, making it look white, rather than directional, showing either the color of the coffee or a reflection) than when the coffee has settled down and the air bubbles have gone away.

9:01am — Kristin (hiking somewhere near Bergen)

Did you ever wonder why waterfalls (or really turbulent rivers) always look white, while a lake or the ocean can look all kinds of different colors depending on what is dissolved in the water and what they are reflecting on the surface? The answer is that in waterfalls (or the really turbulent, “white water” rivers), there are tons of tiny air bubbles trapped in the water. All the surfaces of those air bubbles and also the turbulent flow itself make the water surface very irregular. Since the surface is so irregular, it reflects light from all different directions, rather than just one. As we receive all that different-colored light, our eye interprets it as white. Fun exception: Sometimes we see rainbows in water falls. Then the sun as light source is so dominant that we see the sunlight reflected in the falling water drops and a rainbow appears!

9:01am — Siddharth (Sadashivnagar)

Oh I love this! I think that what Sid doesn’t show us on the very right is a narrow connection to a second body of water, on which waves are generated by wind. (Alternatively, there might be something there at the very right just outside the frame that is making waves, such as a bird or a fountain, but I don’t think that’s the case. Birds usually don’t move this regularly for long enough to generate this wave field even before you started filming and then throughout the whole movie. Fountains usually generate concentric waves (unless there are several fountains, in which case this would be a trick question ;-))) So let’s assume that wind-generated waves from a second body of water pass through a narrow inlet onto this pond. As they pass the narrowest part, they start spreading to all directions, forming concentric waves that grow over time. Well, almost concentric, because the narrowest part isn’t a perfect point source. Therefore we don’t see diffraction at a slit, but rather at a wider opening.

8:58am — Torge (Kiel)

Not a picture, but even better: He managed to fix the problem we had been having with the co-rotating video of our rotating tank. Super excited! If I wasn’t so busy today (slightly underestimated how many pics my dear friends would send me!) I would go try it out right away!

8:51am — Sam (Manchester)

Raindrops on the window! I love how, especially with the ones in the upper part of the window, you can see the world upside down: the bright sky at the bottom of the drops, the darker trees at the top. In the drops further down the window you see the sky at the bottom, then the darker bushes and trees, and then the brighter gravel & car! So cool!

8:28am — Ronja (Nordsee)

On this beautiful picture you clearly see wave crests meeting up at an angle, even though further offshore they all seem to be coming in parallel to the beach. Why? Because there is this groyne going out perpendicular to the shore. You see some of the stones at the bottom of the picture, but from the wave field we see that it reaches further offshore and is just submerged there. Where it is submerged, the water depth suddenly decreases. Waves running close to and on top of it therefore change their speed, and with changing speed, the wave crests bend towards the obstacle (as they are being slowed down more on the obstacle side than on the deeper side). Since this happens on both sides of the groyne, we get this cool checkerboard pattern!

Same explanation as above, but another beautiful picture! :-)

8:13am — Elsa (Bergen)

Ha! Knowing where this picture was likely taken, the fist thing I notice is the reflection of the masts of the sailing ship Statsraat Lehmkuhl! And how pretty the light is looking in between the hulls of the catamaran. And how there are waves radiating away from where other waves bumped against the bottom of those tyres

Bergen is so beautiful! I love how we see the reflection of the colorful houses of Bryggen, then the dark mountain of Fløyen behind it, and then a blue sky with pink clouds! And how the structures of waves are clearest where there are strong contrasts in brightness of the reflected light, for example at the pink/blue boundaries!

More beautiful Bergen. The dark mountain’s reflection does not have a sharp edge, because the water surface isn’t flat. So depending on the angle of the surface, some spots still show mountain while others already show the sky

Same as above, PLUS isn’t it cute how the floaty bits in the foreground have their own little wave rings around them???

What jumps at me here is the turbulent (white) water, most likely caused by a speedboat

Here I love how the surface appears smooth even though there are very clearly waves on it. That means that the waves we see haven’t been caused locally by wind, otherwise there would have to be smaller wavelength stuff on them. Instead, they were generated further offshore and traveled here

7:26am — Kati (Schönbrunn, Wien)

First thing I notice here: How pretty this looks with the reflection! And beautiful weather! Hardly any waves, but there are some structures in the lower right that look like there are possibly plants growing in the water, just breaking the surface

7:07am — Marisa (Hamburg)

Looks like it’s raining in Hamburg! What I always find super cool about rain drops is how they act as tiny lenses and show us an upside-down picture of the world

6:26am — Désirée (Möhnestausee)

This is a picture taken at the Möhne reservoir — a river that has been dammed to create this lake. The water level is regulated, which you see in the horizontal stripes on the opposite side of the lake, each representing what the water level was like at some point in the past..

What an awesome pic! But wait — aren’t water drops (or anything, really) supposed to fly in a straight line, unless there is a force acting on them? There is obviously gravity acting, but why the curve? This riddle is solved by looking at the flying droplets, which are individual droplets. And even though they look as if they are following a curved path one behind each other, this is just our eye being tricked into that. Each drop is flying on a parabola (thanks, gravity) away from the spot where it detached from the end of the flying wet hair. But the drops are not following each other, they just happen to have detached from the hair along a path.

6:17am — FrozenBike (Khajoo Bridge in Isfahan)

I’m posting a couple of screenshots from that video to make it easier to discuss…

First, doesn’t this lake look absolutely beautiful? The calm surface is an almost perfect mirror of the sky because we are looking at the water at a shallow angle, thus we only see reflections and can’t look into the water

Then, we look down. See the plants in the water in the top left of the picture? They indicate quite a strong flow from top left to bottom right of the picture. But wait, there is an obstacle in the way! That stone introduces turbulence. There are waves that are created as water washes past, and there are also eddies shed because the current shear between the flowing water and the more stagnant water in the shelter of the stone is so strong. See that one water plant thingy right below the train of eddies? It seems to be moving in the turbulent flow, too!

And we reach the next obstacle! At the top left, water is still flowing slow(ish), thus the surface is flat and we can clearly recognize the tree reflected in the water. But then we reach the threshold, and all of a sudden the flow goes from laminar to turbulent. See how the whole right side of the picture seems to be full of tiny bumps? That’s where the water is influenced by the structure of the bottom underneath

I absolutely LOVE that my blog and twitter have helped me meet and connect with so many wonderful people all over the world! Here we see Khajoo Bridge in Isfahan, Iran. So beautiful! As for wave watching: In the left side of the picture we see what was the right side of the picture above, the very fast, turbulent flow down the slope. And then at the bridge, there is a jump in surface height: As the water is deeper there, the flow slows down to subcritical speed and a hydraulic jump develops

Last screenshot: The hydraulic jump shown in the last picture, only more prominently pictured. Also visible: The influence of that stone edge on the flow. See all the waves that radiate from it as it is restricting the flow? Super awesome!

6:06am — Chirine (Kiel)

What I notice first is the tiny white sliver of light, close to where the spoon breaks the coffee’s surface. That’s showing us that the surface isn’t perfectly straight, but that it is deformed where the metal of the spoon and the coffee meet. The effect — cohesion between molecules — makes the coffee rise up a little at the edgs of the cup and also where the spoon breaks the surface. You might know this from the meniscus that shows up in test tubes and makes it difficult for the untrained eye to estimate how full a test tube really is

A scicomm comic on Rossby waves and hands-on teaching

Last year in pre-social distancing times, Torge and I brought hands-on rotating tank experiments into his “atmosphere and ocean dynamics” class. The “dry theory to juicy reality” project was a lot of fun — the affordable DIYnamics rotating tables are great to give students hands-on experiences in small groups and to see — by running the same experiment on four rotating tables in parallel — how the same experimental setup can lead to very different realizations because of tiny differences in boundary conditions.

Instead of a classical lab report, we asked students to write a pupular science text about an experiment of their choosing. We got lots of great results (see all of them on our blog “Teaching Ocean Science“), but there is one that particularly stood out to me, and the author, Johanna Knauf, kindly agreed to me publishing it here. Enjoy!


I am super impressed with this comic, and also increadibly flattered and touched. This comic is the most meaningful feedback on my teaching and science communication I ever got and that I can possibly imagine. Thank you, Johanna!

P.S.: Curious about how we modified the project to work with social distancing? Check it out here!

One of the most difficult #friendlywaves I’ve ever gotten! Did I get it right?

Florian sent me a #friendlywave — a wave picture he took, with hopes that I might be able to explain what is going on there. And this one had me puzzled for some time!

This is what the picture looks like:

What I knew about it: Florian was on the ferry from Wisschafen to Glückstadt, crossing the Elbe river.

In the picture itself, there are several features that jumped at me. First, drawn in with the lightblue line below: A sand bank parallel(-ish) to the island’s coast line.

Then, the ship’s wake (shown in red) breaking right near the ship (orange) and turning (green) and breaking (yellow) where it runs on the sand bank.

Florian wrote he was watching the ferry’s wake and noticed something curious: There seemed to be a shallow part, where the waves suddenly became a lot faster! And could I explain what was going on?

Looking at the picture, there were two possibilities for what he might have meant (and, spoiler alert — I completely jumped on the wrong one first!).

Below, I’ve drawn in the part of the wake that is running on the shallow sand bank (green) and how those wave crests continue on the other side of the sand bank (red). I’ve also drawn in some mystery wave crests in blue. Those were the ones I chose to focus on first, since Florian had written that he noticed waves behaving weirdly and suddenly becoming much faster. So if we are talking fast, we are talking really fast, right?

So how do we explain those blue wave crests?

There is a limit for the maximum speed a wave can have. That limit depends on the wave’s wave length: The longer a wave, the faster it travels. In deep water, i.e. water deeper than 1/2 the wavelength, the wave travels at this maximum speed (see green lines in the plot below).

But as it comes into shallower water, it gets slowed down (see black lines in the plot below — those are just a quick sketch, there are complicated equations to calculate it exactly).

In shallow water, i.e. water that is smaller than 1/20th of the wave length, the phase speed only depends on water depth: The shallower the water, the more the wave is being slowed down (see the red lines in the plot below).

Sorry about the quality of the sketch — I don’t have Matlab or anything else useful on the computer I have available right now, so I drew this in ppt! Take it with a pinch of salt, but qualitatively it’s correct!

So looking back at Florian’s picture, for the blue waves to have been caused by Florian’s ferry, there are two options:

A) they would have to have wave speeds faster than the ferry’s bow wave and wake

B) the ferry would have had to come from the direction of the island, so that the waves propagated in that deeper channel behind the sand bank before the ferry made its way around the sandbank.

Option A is impossible, because wakes travel at maximum wave speed (similar to a sonic boom in the atmosphere, where sound is travelling at maximum speed, forming a cone with the air plane at its tip, only here it’s a 2D version, a V-shaped wake with the ship at its tip). So if the wake is traveling at maximum speed already, then the blue waves can’t go faster than that.

For option B, looking Florian’s ferry up on a map, I saw that that ferry goes around a small island, which is the land you see in his picture. But a quick glance at the map shows that even though the sand bank seems to end where the ship would have had to have gone in order to create those waves, the island is still very much in the way. So this can’t be the solution, either.

This map is published at http://map.openseamap.org under a CC BY-SA 2.0 license

So let’s take another good look at the original picture.

Remember those wave crests that I marked in blue? Well, upon closer inspection it turns out that they are tidal gullys and not wave crests! (Which is what Florian confirmed when I asked whether he remembered the situation) Guess I have been barking up the wrong tree all this time!

So back to the wave crests that I marked in red:

What we see here is exactly the depth dependence of the phase speed that I plotted above. Right at the sand bank, the water is shallowest and waves are slowed down (we see that both in the green wave crests that seem to be falling back and start breaking as they get closer to the sand bank [both indicating that the water is getting shallower], and in the red wave crests right at the sand bank). But as the water gets deeper again on the far side of the sand bank (which depth measurements in the map above seem to confirm), the phase speed picks up again (as it has to — see my plot above) and the wave crests accelerate again. Hence we have the weird phenomenon of waves suddenly speeding up!

Very long explanation, I know, but still pretty cool now that we solved it, right? I love #friendlywaves — if you have any mystery wave pictures, please do send them my way! :-)

Marine energy: Tides. A guest post by Manel Camacho

Today’s guest post is brought to you by Manel Camacho. Manel and I met on Twitter and bonded over our joint love of wave watching — me as a dedicated amateur, Manel as PhD student in marine energy. Today, Manel is giving us a glimpse into what marine energy is all about. Enjoy! :-)

As a person that grew up in the coast of a tropical country will be weird for me to say that I was afraid of the sea during most of my childhood. I remember going outside of our parked car at the sand to meet the sea, was my 1st time and the day was warm; no clouds anywhere and no wind. Same moment an enormous wave came into my direction, I ran inside and never went out for all day.

Ironic as it is despite this fear, 25 years later I was doing a Ph.D. on marine energy. Marine energy engineering is the subject that involves the use of our oceans to produce electricity, the sea by itself it is involved in one of the biggest energy exchanges on the planet earth. The energy exchange involves the gravitational pull of the sun/moon and also the sun thermal radiation.

The first force that I will talk about causes a phenomena called “tide”, as we know the moon and the sun can exert a gravity force over the earth. The gravity force as we know tries to pull out any mass into its direction, as the continents and the sea bottom are made of dense rock they resist this pull; however the seas can deform more easily, the force will pull out the seas above its normal level. This rising and decay of the sea level is called “tide”. The difference on elevation from the low level to the higher level can be over half a meter in open ocean, when its pulled is called “high tide” ad when its not “low tide”. 

We might think that half a meter of difference is not too much, but when the ocean reaches a depth of more than 3000m is considerable. Comparing lets take a circle of 1 meter radius in the sea and lift it 1 meter, we’ll the same force to do this is to pull up almost 95 liberty statues just one meter above the ground.

Now that we know how much force is need it to pull that single cylinder of water, imagine again the force necessary to make an entire ocean to vary half a meter on level. The forces of the sun/moon will cause the ocean to bulge, then earth rotation will cause these bulges to move across the globe. When we are at the coast and we see the water rising at night and day, what we see is the water reacting to these forces creating this massive but imperceptible lumps in the ocean.

The water height increases more at the coast than in open sea, this will cause that certain parts to rise several meters at the “high tide”. These sudden increases on water will cause a flood on the coast, if it moves to the coast is called “flood” or away from the coast “ebb”. These flows will cause strong currents in certain locations, these currents work similar to the wind blowing; the currents produced then can be used to harvest energy, the easiest way to do it is using a device similar to a wind turbine.

Devices used to extract energy from the tidal stream currents are called, tidal stream turbines. These devices use knowledge learn from disciplines as wind energy, marine, civil and offshore engineering as naval, mechanical and aerospace areas.

As any new device to produce energy many problems need to be solved, problems related to: how it affects to the animals, to the people and its way of living, how they will survive in extreme weather and many many more. But thats something to discuss further.

#WaveWatchingWednesday

A week’s worth of #WaveWatching pictures for you. Enjoy!

Starting off strong: I love living in Kiel!

Totally different vibe the next morning, looking very winter-y somehow.

And then another early morning on my way to the beach. Below you see the locks on Kiel canal from the bridge that crosses the channel. I really love this view but I have to admit — if the ferry ran this early in the morning already, I’d totally take it to cross the channel rather than cycling that bridge!

But arriving at the beach always makes it worth it!

Taking the ferry back home… Love this picture! A turbulent wake, a feathery wake, those clouds… What more could anyone want?

….and we are back on the next day! Waves breaking pretty much right on the beach because the beach profile has a step shape right at the water line. Looks surreal to have those long smooth waves, than a tiny bit of breaking, then nothing but sand…

All those bubbles in the white water of the breaking waves!

I actually took the picture below because of the birds’ wakes in the center. Weird how it turned out!

And here is one just because it’s pretty!

Always surprising how many fossils there are on the beach, even though this is the 5th day in 8 days of me collecting on the really short stretch from there to the lighthouse! How many more are hiding underneath our feet and we’ll never know?

Took a very similar picture as on the day before, but I love all the different parts of the wake, the clouds, the reflections. So beautiful and calming.

Running, seal watching, swimming in Kiel fjord, now my well-deserved coffee. Have a nice Sunday everybody!

On Monday, a colleague from GEO visited me to do an interview on wave watching. Amazing day!

Taking the ferry & admiring the wakes. Isn’t it fascinating for how long turbulence persists & wipes out any waves / prevents formation of new waves? Love the different surface textures!

Also fascinating how differently wakes look depending on weather conditions!

Love how dramatic this looks!

…and how turbulent patches are so smooth and reflect the building so well. And then a sharp boundary and we are back to the normal surface roughness of wind waves!

I can’t get over how fascinating this is!

Also love the pictures for their beauty. Below: After we had arrived at a stop, the ferry has just started sailing again (see where the wake changes between smooth and turbulent and then those large eddies of the propeller rotating for propulsion?)

Very nice pattern in the waves this morning, showing constructive interference (where the crests are high and the troughs are low) and destructive interference in between where the surface is completely flat. So fun to watch!

And that’s it! Hope you enjoyed and hope it inspires you to do some wave watching yourself! :-)

Wave watching in preparation of a guided tour! (Day 2)

Woke up at 4:11 this morning and was AWAKE. So the obvious thing to do is catch the sunrise from the bridge across Kiel canal!

And I was lucky that there was quite a lot going on in the locks already, too!

Look at this beautiful wake! Early morning wave watching is really the best because the light from a shallow angle makes all the wave features stand out beautifully.

Ha — caught the wake reflecting on the side of the canal!

I love early mornings! Another example of wave features that come out really clearly in morning light but that would be really difficult to capture if the sun was higher up already.

Anyway, on to the beach! Aren’t you happy I got up this early?

Maybe I should make people get up for sunrise on my wave watching tour! Would definitely weed out all the people who aren’t 100% dedicated to wave watching. I might end up alone on the beach, but I would probably enjoy that just as much as I enjoyed it this morning!

Definitely a very dramatic sky again!

Yesterday I found tons of fossils on a really short stretch of the beach, so I wanted to see if that was just a fluke. Today, the beach looked very different! Remember how yesterday there was a band with small pebbles all along the water line? Not today! Think of all the fossils that the sea claimed back over night!

Still a lot of stuff to be found today, though. I especially love the non-fossilised fishy at the bottom of the pic below. Isn’t he cute?

But on to wave watching. With only these long waves present, it’s really nice to observe how the wave crests behave as they reach the beach. Below: Breaking, but simultaneously…

…already pulling back. That wave front looks so … unreal?

For your morning meditation, watch the movie below (sound on!)

The peninsula that connects the lighthouse with the beach makes for super interesting wave watching, because the waves on either side of this small strip of sand usually look very different. Today: the far, upwind side is again a lot rougher than the lee side in the foreground.
But also very cool to observe here is how the sand ripples underneath the waves are formed by the wave field.

The picture below was raken right at the edge where, in the picture above, the sand dam meets the lighthouse’s island (you see the reinforced edge of the island at the bottom of the picture) and the ripples clearly show where the beach falls dry in between waves washing over it (smooth, no ripples), where the wave field is mostly regular (regular ripples), and where there is chaos of waves being reflected back and forth (small messy ripples).

Moving on towards the right (away from the dam), ripples get more and more regular. You still see the reinforced edge of the island at the bottom of the picture.

A little further to the right still, and the regular ripples reach all the way to the edge of the island.

And walking a lot further to the right, ripples are long and regular (those are the dark structures — all the messy light structure is the sun ding weird things in the water).

And here is a cool movie of a wake arriving and meeting a shallow stretch. For details of what’s going on there, check yesterday’s post!

And there we have it. Those are the waves that can typically be observed at Falckenstein beach (that is — those are the special ones. Of course we’ll also do all the basics! But as a faithful reader of my blog, I’m sure you know all those already :-))