Tag Archives: wave watching

Commissioned wave watching: Eckernförde edition on a beautiful calm and sunny Sunday!

Recently, more and more of my friends send me pictures of waves they spotted when walking along a lake side or taking a ferry ride. I love how contagious wave watching is, and I love sharing my fascination with you! :-)

Here are some pictures that Fred sent me of his lovely Sunday walk today. There are at least five interesting things that I notice in the picture below. How about you?

  1. Look at the beautiful interference pattern where two wave fields are almost perpendicular to each other, creating the checkerboard pattern! As you see in the picture below, there is one wave field coming in at a 45ish° angle to the sea wall, so its reflection is at 90ish° to the original wave field.
  2. In the background you see the surface roughness changing and the water seeming darker where there is a breeze going over the water, creating small ripples that reflect the sky in a different way than the smooth surface closer to us.
  3. See the waves the seagull made where it landed on the water?
  4. Looking at the foreground, do you see the tiny ripples that show up not so much on the surface of the water, but rather at the sandy ground, because they focus the light?
  5. And notice how you can look into the water in the foreground but not in the background? That’s the awesome phenomenon of total internal reflection where, if you look at water at an angle that is smaller than a critical angle, you cannot look into the water any more but just see light reflected at the surface! One of the things I never understood we had to learn about in school, but that I find super cool now.

And in the picture below, what do you see?

What I find most interesting in the picture above is how the reflection of that storehouse tower looks different in areas with different surface roughnesses. Where there is a breeze on the water in the background and in the foreground, it’s a lot more spotty than in the calm and smooth surface in between. And the checkerboard waves pattern (now you see the seawall that created the reflection, btw) carries through to the reflections, too, with the blue crisscross going into the white area where a cloud is reflected.

And then the phenomenon of total internal reflection is really clearly visible here with a lot of reflections on the water (or just more interesting things to reflect than just a blue sky in the previous picture) and a view down to the ground only in the very foreground of the picture.

Thanks for sharing these beautiful pics, Fred!

 

Forget about big waves, today we are focussing on the details!

Today we are focussing on tiny waves right near the shore inside the sheltered harbor. See how below there are two wave fields, one with longer waves with crests that are parallel to the water’s edge, and then shorter ones propagating at a right angle relative to the first field?

Where the rope swims on the water you see how the short wind waves are stopped and only start forming again at a distance downwind of the rope.

The same here: Where there are ropes floating on the water, the water’s surface looks a lot smoother because the wind waves that propagate perpendicularly to the ropes are erased. But there are some wave crests parallel to the rope, formed by the rope hitting the surface and being pulled out again!

Below, the ropes don’t actually touch the water’s surface, but we have cool reflections of waves with crests parallel to the two walls that form the corner. The water level is right at the height where there is a little ledge on the wall that gets flooded with wave crests arriving and then falls dry during wave troughs. This causes this cool pattern of wave crests that seem to be interweaved right at the corner.

Sometimes looking really closely at small scale pattern is even more fun than looking at the sea and all the big and flashy (or splashy?) stuff going on there!

More wave watching, this time in Kiel

Beautiful morning arriving back in Kiel… Looking downwind, the weather might seem pleasant (especially when focussing on the sunrise).

But looking upwind however, the wind rows on the water as well as the white caps on the waves indicate that it’s quite windy!

Very cool: the turbulent wake of a ship interrupts the wave field and therefore, with its different surface roughness, is clearly visible!

And below you see so many things: The sand bank running from the lighthouse towards the next headland becomes visible as waves are breaking  on it. The turbulent wake of that blue ship we saw above already is still clearly visible, as is its V-shaped wake. And you see our own wake as the feathery pattern that runs all the way from the bottom edge of the picture to way behind the blue ship!

And here our own wake becomes even more prominent as we turn. Laboe in the background…

Here is another ship, waiting to enter the locks of the Kiel canal. It’s moving only very slowly (so hardly any wake visible), but you see how it’s sheltering the water from the wind so the downwind water appears completely smooth right at the ship!

And here are some more wakes and sheltered spots of water surfaces. Locks of the Kiel canal in the background!

And another look at the locks. Do you notice how the wind rows still indicate that it’s quite windy, but how it’s a lot less windy than it was further out?

And then we are in the Kiel fjord. This is the upwind shore — see how waves are only slowly forming and building up with longer and longer fetch?

And then in the sheltered port a different kind of waves: Our bow propellers mixing the inner Kiel fjord!

Sunset wave watching in Gothenburg. Wakes under different light conditions!

Wave watching from high up gives you a whole new perspective on wakes, and depending on the lighting, features in the wave field become more prominent or fade away.

See for example below the ferry: You very prominently see the turbulent wake right behind the ship, and you see the waves of the wake opening up in a V-shape.

Above, there is still a lot of ambient light from the sky. Below though, the same ferry, similar spot, 30 minutes later: The turbulence is a lot harder to see since colors fade away, but the V-shaped wake becomes really clear since one slope of the waves reflects the city’s lights while the other reflects the darkness.

Another ferry coming in, another wake… Below the surface roughness becomes clearly visible with the turbulent wake right behind the ferry and the bow waves fanning out.

That was one brilliant mini cruise! Thanks for joining me, Frauke, and for staying out on deck with me — despite the freezing temperatures — until we were far out of the port and the light was gone completely. The sacrifices we bring in order to wave watch… ;-)

Wave watching on Kiel Canal: Bulbous bows and how they shape the wave field

Even when I fully intend to just go for a Saturday afternoon walk to catch up with a friend, this is what happens…

I get distracted by waves. Like the crisscrossing pattern of waves and their reflections that you see below.

Or the amazing bow waves of ships passing by. Isn’t it fascinating what a huge amount of water is displaced by the ship’s bulbous bow, piling up into a mountain in front of it, then the sharp dip where the actual ship begins? (If you want to read about why ships are built with a bulbous bow, check out this old blogpost).

Having a bulbous bow alone does not always lead to the same bow wave. Which is fairly obvious when you think about it, of course the speed of the ship or the shape of the bow influence the wave field that is created, but also how heavily the ship is loaded, i.e. how deep the bow is in the water.

What you can see very nicely on the sequence of pictures of bows and bow waves in this post are bulbous bows going from fairly far out of the water (above) to fully submerged (towards the end).

And I just love the sharp contrast of the smooth water piling up and then the turbulence and breaking waves right there. Interesting example of subcritical and supercritical speeds, btw: The ship travels faster than the bow wave (so the bow wave can’t overtake the ship, but always stays behind it, forming a two-dimensional Mach cone).

The ship in the picture below is the odd one out in this blogpost: It does not have a bulbous bow but just pushes water in front of it. This is an interesting example of a bow shape that is clearly not optimized for energy efficiency when traveling large distances, but then the purpose of that ship is obviously a different one. But isn’t it amazing how such a small ship creates waves larger than all the other much bigger ships do, just because they have better bow shapes?

But beautiful wakes nonetheless. I love those tiny ripples riding on top of the wakes!

And, of course, the checkerboard pattern of a wave field and its reflection.

Here is another example of a ship with a bulbous bow, this time it is almost submerged. Since they are designed to be fully submerged, this ship is loaded in a way that is closer to what it was made for, and you see that the generated waves are smaller than the ones in the pictures up top.

And look at its wake — really not a lot going on here, especially when compared to the much smaller ship a couple of pictures higher up in this post!

Now for a ship that is hardly creating any waves at all, the mountain of water that it’s pushing in front of its bow looks especially weird since the bulbous bow isn’t visible any more.

See? (And isn’t it cool how the chronological order of pictures in this post just coincided with ships laying deeper and deeper in the water? I love it when stuff like that happens :-D)

And then, of course, I had to include some more pictures of beautiful wakes…

Do you see, comparing the picture above and below, how the first one was taken when the wake had just reached the shore, and the second one the wake was reflected on the shoreline already?

Not many things make me as happy as wave watching :-)

P.S.: Ok, one last bonus picture (non-chronological, we saw it some time during the walk. But that’s ok, I wasn’t going to include it until the post was already done and I decided that you just HAD to see this): Someone who is clearly not using their bulbous bow to their advantage. But at least I get to show you what they look like when they are not in the water. And we got to speculate about how annoying it is to be on a ship with such a strong tilt all day :-D

Ferry sailed past, wake perpendicular to wind. Cool interference pattern!

Guess the title says it all today ;-)

Just kidding. Below you see a movie of a neat interference pattern I observed this morning. The situation is similar to yesterday in that the ferry has sailed past and the wake runs up on those bathing steps. But: today it’s quite windy and the wind waves’ crests are perpendicular to the crests of the ferry’s wake. Check it out:

That’s the kind of stuff I loooove watching! Happy New Year, everybody, may there be plenty of wave watching in 2019!

P.S.: Am I the only one who always wants to write fairy when writing about ferries? :-D

When the ferry has long sailed past and the waves start appearing out of the fog…

Ending 2018 in style and exactly the way I want to continue in 2019: wave watching and dipping into Kiel fjord!

2018 has been an exciting year and a lot of changes that will shape 2019 to be very different from anything I have ever done before have already been set in motion. But despite all the new adventures, some things will stay the same: Stay tuned for ever more adventures in oceanography and teaching that I look forward to bringing to you!

Happy and healthy 2019!

Same wind, different waves, or: the influence of fetch length on the size of waves

I just found this picture that I took back in May near my friend Elin’s cabin on an island in western Norway, and it’s a really nice illustration of how the same wind will cause very different waves depending on whether it’s blowing over the sea for many kilometres, or over a puddle for only a couple of centimetres.

Wave watching as official part of the program of a conference on chemistry and physics education!

Yes, you read that correctly.

The German Society for Chemistry and Physics Education (GDCP)’s annual conference started out with a 2 hour cruise on Kiel fjord, during which the participants had the opportunity to choose between enjoying the sunshine and just doing whatever they liked, and several “guided tours” on either the sights of Kiel in general, or the biggest sight in Kiel, the water :-)

Preparation is everything: charts to learn to observe waves

I had prepared laminated charts to be used in case for some reason the weather wasn’t cooperating, and they definitely came in handy even during beautiful sunshine. On those charts, I used pictures that you’ve seen on this blog before, and contrasted them with typical physics text book illustrations, either sketches or ripple tank photos.

Since I was fairly busy talking, I only snapped two pictures:

The Oslo ferry right after turning inside the Kiel fjord, right when it starts backing up towards its berth, and, more interestingly, the turbulent wake. See how messed up the wave field is? It’ll take quite a while for all that turbulence to dissipate and for the sea surface to look as if nothing ever happened there!

And then our ferry’s wake. Here we see the turbulent propeller wake and one side of the feathery wavelets of the V formed by the wake.

Beautiful day to be on a ship!

Now, if you’d like to do a guided wave watching tour, you know where to find me… ;-)

Reading the water — a new mystery picture for you! Today: Kiel Holtenau edition

Do you sometimes like to play detective when looking at water and figure out who or what caused certain pattern on the surface? Then I’ve got a nice riddle for you today!

Where do all those lines parallel to the pontoon come from?

Look at the picture below. Do you see all those parallel lines this side of the pontoon? Any idea what might have caused them?

Hint: The pontoon is floating on the water, and sometimes this happens: Ships pass by.

And when ships come by, they make waves, and then it looks like this:

(full disclosure: As you might or might not see from the waves on the far side of the pontoon in the picture above is that the ship that caused those waves was going into the locks (so right to left) in contrast to the ship in the picture above this one, where the ship went out of the canal and into the Kiel fjord…)

But yes! Ships make waves, which then move the floating pontoon, and with its edge the pontoon generates those long straight wave fronts, one after the next, so they propagate out as parallel lines, following each other!

Sometimes also this happens:

Going the wrong way round without any issues! I like tugs, they are just really really cool and I want to drive one some day.

But even without tugs in sight, Kiel is a super nice place to live in…

Happy Sunday evening, everybody! :-)