Tag Archives: Kiel canal

Wave watching at the Kiel Holtenau locks

So many people are surprised when I speak of wave watching as of a “real activity”. But to me it is! So I am going to talk you through a couple of minutes I spent looking out on the water where the Kiel Canal meets the Kiel fjord, right outside the locks at Kiel Holtenau.

A light breeze across the fjord

The “light breeze” part is fairly easy to observe: There are ripples on the water, but no actual waves. “Across the fjord” is also fairly obvious if you look at either side of the wave breaker: On the fjord side, there are ripples, on the shore side, there are none (or hardly any), indicating that the wave breaker is sheltering the shore-side from the wind (and dampening out the waves that come across the fjord).

And then: A ship sails into view!

We watch the ship sail past, dreaming of foreign countries and exciting adventures.

A ship leaving a wake

Behind the ship, the water looks very different from what it looks like everywhere else. The wake is turbulent and waves radiate outwards like a V, with the ship always at its tip.

Then, the ship is gone. But we can still see where it went.

There are no waves in the tubulent wake

The ship’s path is completely smooth. No waves have invaded the turbulent waters of the wave just yet, claimed them back. However, the waves the ship created in that V are about to reach the wave breaker.

Also the wind has picked up a little, as evident from the less smooth water surface shore-ward of the wave breakers.

Diffraction at a slit

Right after the waves from the V reach the wave breaker, they reach the opening at the end between the pylons. And what happens now is that the waves get diffracted at a “slit”: they propagate outwards as semi circles, even though the wave fronts were straight when they reached the slit.

How awesome is that? And all of this happening in a matter of minutes!

The weather changes

I said earlier that there was hardly any wind. Later that afternoon, it still wasn’t very windy, but the wind direction had changed: now the smooth and sheltered part has moved to the other side of the wave breakers. There are a lot more waves on the shore side of the wave breaker now, the ones with crests parallel to the wave breaker due to it moving, and the ones with crests perpendicular to it generated by wind. And you see gusts of wind on the sea side of the wave breakers in the different surface roughness.

So if you were wondering, too: That’s the kind of stuff I look at when I am wave watching. And I still find it super fascinating and relaxing at the same time! :-)

When not the fetch but a funnel shapes the wave field

As you know we are currently preparing for future wave riddles. So this afternoon I went out for a wave hunt again and found something beautiful for you!

The ship coming out of the Kiel-Holtenau locks into the Kiel Canal is making waves, but although those are pretty exciting, too, there are more things going on in the picture above…

Many processes can create waves

In addition to waves made by ships, seagulls, the locks opening and closing, and those waves being shaped by reflection, refraction, and all those other processes, most waves look actually pretty similar, and they are all formed by the same process.

Most waves are wind waves

In almost all situations it’s a safe guess that most of the waves you see are caused by the wind. Either locally, or by storms far away. Of course, the waves might look very different from day to day and location to location. But as a rule of thumb, the stronger the wind, and the longer it has been blowing, and the longer its way over water without any obstacles in its way, the higher the waves.

Usually the length of the fetch shapes the wave field

This uninterrupted stretch that the wind can blow over the water is called the “fetch”. And it explains why you don’t have really large waves on small ponds: if the fetch isn’t long enough, waves just don’t have enough time to build up from when they are generated at the upwind side of the pond until they have reached the downwind side.

Sometimes obstacles shape the wind field

Sometimes though, there are obstacles in the wind field that cause interesting wave phenomena. Below you see that the wind that has been coming across Kiel Canal is interrupted by those pylons. Upwind of the pylons the waves are fairly regular and pretty boring.

But remember your Bernoulli? If the area across a flow decreases, for continuity reasons the flow speed has to increase.

Since air is “flowing” in that sense, too, it’s accelerated where it goes in between and around those pylons since it has to squeeze through a smaller cross section than it had to its deposal further upwind.

The wind field is mirrored in the wave field — well, kind of

Do you see how the faster wind causes all these nice little ripples? Maybe “mirroring” the wind field isn’t quite the right way to express it, but you can definitely see where the wind speeds are different from the rest of the Kiel Canal just by looking at the waves! From there the waves then propagate as sectors of circles outwards and leave the areas of the high wind speed, but they quickly dissipate and vanish again.

Wave watching is awesome. Can you think of anything better to do on a Saturday afternoon? :-)

Feathery wavelets and wakes

My sister took this amazing picture — and from a train no less! And I got super excited. Can you see the feathery wavelets* of the bow wave of that large ship? And then the wakes of both ships, spreading out at the same angle? I should definitely start spending time on high bridges going across canals, there is so much unused potential for wave photography!

*I was super convinced at first that they were called “winged wavelets”. But then doubt started to kick in, so I asked google. Turns out they are called “feathery”. However, apparently “winged wavelets” is a very poetical expression, all google hits are in some poem or other! And one that I really liked by Mary Bamburg, where it goes like this (as part of a longer poem):

“… waves wring sand from the shore,
strew shells, strech after them
white wash and wild winged wavelets
glass green, blaze blue, slick silver …”

Does it create the same beautiful image before your inner eye as it does for me?