Tag Archives: baroclinic instability

Thermal forcing vs rotation tank experiments in more detail than you ever wanted to know

This is the long version of the two full “low latitude, laminar, tropical Hadley circulation” and “baroclinic instability, eddying, extra-tropical circulation” experiments. A much shorter version (that also includes the end cases “no rotation” and “no thermal forcing”) can be found here.

Several of my friends were planning on teaching with DIYnamics rotating tables right now. Unfortunately, that’s currently impossible. Fortunately, though, I have one at home and enjoy playing with it enough that I’m

  1. Playing with it
  2. Making videos of me playing with it
  3. Putting the videos on the internet
  4. Going to do video calls with my friends’ classes, so that the students can at least “remote control” the hands-on experiments they were supposed to be doing themselves.

Here is me introducing the setup:

Today, I want to share a video I filmed on thermal forcing vs rotation. To be clear: This is not a polished, stand-alone teaching video. It’s me rambling while playing. It’s supposed to give students an initial idea of an experiment we’ll be doing together during a video call, and that they’ll be discussing in much more depth in class. It’s also meant to prepare them for more “polished” videos, which are sometimes so polished that it’s hard to actually see what’s going on. If everything looks too perfect it almost looks unreal, know what I mean? Anyway, this is as authentic as it gets, me playing in my kitchen. Welcome! :-)

In the video, I am showing the two full experiments: For small rotations we get a low latitude, laminar, tropical Hadley circulation case. Spinning faster, we get a baroclinic instability, eddying, extra-tropical case. And as you’ll see, I didn’t know which circulation I was going to get beforehand, because I didn’t do the maths before running it. I like surprises, and luckily it worked out well!

Thermal forcing vs rotation

The first experiment we ever ran with our DIYnamics rotating tank was using a cold beer bottle in the center of a rotating tank full or lukewarm water. This experiment is really interesting because, depending on the rotation of the tank, it will display different regimes. For small rotations we get a low latitude, laminar, tropical Hadley circulation case. Spinning faster, we get a baroclinic instability, eddying, extra-tropical case. Both are really interesting, and in the movie below I am showing four experimentsm ranging from “thermal forcing, no rotation”, over two experiments which include both thermal forcing and rotation at different rates to show both the “Hadley cell” and “baroclinic instability” case, to “no thermal forcing, just rotation”. Enjoy!

Baroclinic instabilities / Hadley cell circulation in a tank

The DIYnamics-inspired turntable that Torge and myself have been working on for our “dry theory to juicy reality” project is finally working well!

This is what the setup now looks like (how simple is that?!) and we had an exciting morning testing different experiments!

The one experiment that we have been using as test case in all our previous sessions is the Baroclinic Instability / Hadley cell circulation. There are sketches of the setup and the expected circulation in this blogpost, so just a quick reminder: We place a cold core in the center of our tank (here a glass with blue ice in it), spin the tank (at approximately 20rpm) into solid body rotation, and introduce dye (blue towards the center, red towards the outer edge of the tank).

And what happens then is just beautiful: We get 2D instabilities that transport cold (blue) water outwards and warmer (room-temperature, red) water towards the center of the tank.

We’ve run the experiment three times with different water levels (and once with Southern Hemisphere rotation just for fun) and it worked beautifully each time.

I find it always fascinating how there is hardly any mixing between the red and blue curtains (and there shouldn’t be any because rotating flows become 2D (as shown here)).

Just look at how the dye curtains form when we first add the blue dye…

And then a little later added some red dye…

And then let the field develop.

So I think we’ve got this experiment down and can run it with the students once the semester starts up again in October! :-)