Tag Archives: DIYnamics

Finally published yesterday: “Student guides: supporting learning from laboratory experiments through across-course collaboration” by Daae et al. (2023)

A project near and dear to my heart is using the DIYnamics rotating tank experiments in across-course collaborations. “Older” students, who did experiments the previous year, are trained to then act as guides to “younger” students when they do experiments for the first time, thus lowering the threshold of engaging with equipment, acting as role models when it comes to experimentation, the way to talk about the experiments, and much more. The “younger” students appreciate the interaction, support, and guiding questions, the “older” students realize how much they learned in only a year and what an important role questions play in the learning process.

We started planning this project already before the pandemic, then ran the very first test with 3 paid “older” students in 2020, and then with both full courses, “older” and “younger” students, in 2021 (which is when I took the pictures in this blog post). Then in 2022, we made sure to evaluate the whole thing properly, and that is what, after we presented this project at several conferences already (for example this spring: poster here), is now finally published as

Daae, K., Årvik, A. D., Darelius, E., Glessmer, M. S. (2023). “Student guides: supporting learning from laboratory experiments through across-course collaboration”. Nordic Journal of STEM Education, Vol. 7 No. 1: full papers 2023, p 98-105, DOI: 10.5324/njsteme.v7i1.5093

You can download the pdf here (and you should, it’s a pretty cool project!).

Preparing conference presentations on our DIYnamics experiments in across-course collaborative learning

In 2021, Kjersti and I gave a presentation at iSSOTL on our across-course collaboration project using rotating lab experiments. We’ve continued working with that, and Kjersti is presenting two posters and a presentation at the MNT conference in Stavanger tomorrow! For those of us who can’t be there, here is what she will talk about.

Continue reading

Artikel “Praxisnähe dank digitaler Versuchsküche” von P. Mertsching über remote #KitchenOceanography

Im “eMagazin für aktuelle Themen der Hochschuldidaktik” der Uni Kiel ist der Artikel “Praxisnähe dank digitaler Versuchsküche” von Phil Mertsching über Torge’s und mein Projekt “Dry Theory 2 Juicy Reality”, insbesondere die Umsetzung im letzten Jahr mit den Zoom-Konferenzen aus meiner Küche, erschienen, zusammen mit vielen anderen spannenden virtuellen und hybriden Formaten. Es lohnt sich, da mal rein zu gucken!

Alles andere als trockene Theorie (Repost)

Unser “DryTheory2JuicyReality” Projekt wurde durch den PerLe-Fonds für Lehrinnovation gefördert. Hier ist ein Repost eines Beitrages, den ich für den Blog “Einfach gute Lehre” geschrieben habe.

„Meeresströmungen im Wassertank“: Lehre, die Wissenschaft begreifbar macht

Über eine Lehrinnovation, die auf Kleingruppenarbeit und „hands-on“-Praxiselemente setzte – und was in Zeiten von Covid-19 daraus wurde.

In der Lehrveranstaltung „Atmosphären- und Ozeandynamik” im Bachelorstudiengang Physik des Erdsystems wird das theoretische Grundgerüst zum Verständnis der globalen Bewegung von Luft- und Wassermassen erarbeitet, welches zum Beispiel Wetter- und Klimavorhersagen ermöglicht.

Vor der Lehrinnovation von Dr. Torge Martin (GEOMAR) und Dr. Mirjam Gleßmer (fascinocean) geschah dies vorwiegend theoretisch auf Papier und an der Tafel. Die Verknüpfung der Theorie mit beobachtbaren Phänomenen der realen Welt kam dabei oft zu kurz. Um die Theorie begreifbar zu machen, haben wir praktische Experimente in rotierenden Wassertanks und am Computer eingebettet. Diese werden von den Studierenden gemeinsam durchgeführt und das Verständnis durch in Gruppenarbeit erarbeitete Blogposts vertieft. So zumindest im ersten Semester der zweisemestrigen Lehrinnovation…

Das erste Semester – der Plan geht auf

Schon in Vorbereitung der Antragstellung bei PerLe konnten wir nicht länger warten – wir mussten uns einfach privat einen rotierenden Tank für zuhause anschaffen und die Experimente schon mal probieren! Was normalerweise viele Hundert Euro kostet, ist Dank der Bauanleitung des DIYnamics Teams und der Verwendung einfachster Bauteile (wie zum Beispiel eines LEGO Motors) auf einmal erschwinglich. Und das Wissen, dass eventuelle Fehler nicht furchtbar teuer werden, lässt uns – und auch unsere Studierenden – viel unbeschwerter und kreativer experimentieren!

Rotierende Tankexperimente durchzuführen ist zeitaufwendig: Bis der gesamte Wasserkörper in gleichmäßiger Drehung ist und die Durchführung des eigentlichen Experimentes starten kann, vergehen schon mal 30 Minuten. Die Finanzierung unseres Lehrinnovationsprojektes durch PerLe ermöglichte uns, vier rotierende Tanks anzuschaffen – genug, dass Studierende in Kleingruppen experimentieren können und so vier Experimente gleichzeitig vorbereitet und je nach Anwendung direkt oder nacheinander durchgeführt werden können. So können Entscheidungen über Parameter individuell in den Gruppen oder gemeinsam besprochen und getroffen. Im Seminarraum entsteht so eine angeregte Diskussion über Effekte und Theorie, wie sie zuvor durch Vorrechnen an der Tafel nie entstand.  Und noch etwas haben wir gemeinsam erfahren: Bloß weil zwei Gruppen die gleichen Parameter ausgewählt haben, werden zwei Experimente noch lange nicht gleich aussehen! Diese Erfahrungen zu machen und zu diskutieren war sehr wertvoll und nur durch die vier parallellaufenden Tanks möglich.

Dr. Torge Martin und die Studierenden seines Kurses zur „Atmosphären- und Ozeandynamik” diskutieren ein rotierendes Tankexperiment, das von einer Gruppe vorgeführt wird.

Der zweite Aspekt unserer Lehrinnovation – frei nach dem Motto „Lernen durch Lehren“ – war ein Kurs zum populärwissenschaftlichen Schreiben, den Dr. Yasmin Appelhans durchgeführt hat. Die unglaublich kreativen Ergebnisse kann man auf unserem Blog „TeachingOceanScience“ bewundern! Es sei nur ein Beispiel herausgehoben: der beeindruckende Comic von Johanna Knauf. In dem Comic behandelt Johanna nicht nur fachlichen Inhalte, sondern hebt auch hervor, dass wir auf Lehrenden- wie Studierenden-Seite die Lehrinnovation mit Enthusiasmus und Spaß – und ganz viel Spielen! – durchgeführt haben.

Ein Bild aus dem Comic der Studentin Johanna Knauf, das zeigt, dass auch in der Wahrnehmung der Studierenden die beiden Lehrenden mit Enthusiasmus und Spaß bei der Sache waren.

Unser inoffizielles Motto „Man sollte einfach viel mehr spielen!“ haben wir sogar offiziell und zum Titel eines Seminars gemacht — natürlich immer unter dem Verständnis, dass „spielen“ die Art des explorativen, kreativen Herangehens an neue Fragestellungen bedeutet und sich nicht nur auf die LEGO-Bauteile beschränkt, bei dem wir alle Kolleg*innen des Instituts eingeladen haben, nach einer sehr kurzen Einführung zu den möglichen Versuchen einfach selbst mal mit unseren vier rotierenden Tanks zu „spielen“. Und wie das angenommen wurde? So dass wir den Hörsaal erst unter viel Gegrummel geräumt haben, als die nächste Lehrende nun aber wirklich anfangen wollte!

Auf vier rotierenden Tanks werden durch Studierende im Forschungsseminar unter großem Anklang vier unterschiedliche Experimente durchgeführt.

Alles Feedback, das wir bekamen, war also uneingeschränkt positiv. Doch dann kam Covid-19.

Das zweite Semester – hands-on und digital

Was tun, wenn auf ein Mal genau der enge Kontakt zwischen Studierenden, das gemeinsame Spielen und Beobachten, die das Herzstück unserer Lehrinnovation waren, nicht mehr möglich sind und alle Lehre digital stattfindet? Idealerweise hätten wir allen Studierenden einen eigenen rotierenden Tank zur Verfügung gestellt, aber das ging natürlich nicht. Aber da war doch ein privater Tank irgendwo zuhause…?

Dr. Martin verdeutlicht am Vergleich des rotierenden Experiments mit dem nicht-rotierenden Fall, welchen Einfluss die Erdrotation auf Meeresströmungen und atmosphärische Winde hat.

Der Einfluss der Erdrotation auf Meeresströmungen und atmosphärische Winde ist nicht gerade intuitiv. Um diesen gut zu verstehen, ist es oft hilfreich, ihn direkt mit dem analogen nicht-rotierenden Experiment zu vergleichen. Und so gelang es uns, auch in der virtuellen Lehre die hands-on Komponente zu erhalten: Die Studierenden führten bei sich zuhause die einfachen, nicht-rotierenden Fälle durch, und für die rotierenden Experimente kamen sie kurzerhand virtuell in Dr. Gleßmers Küche.

Abbildung 5: Ferngesteuerte Tankexperimente: In der Küche von Dr. Gleßmer steht der rotierende Tank, der mit zwei Endgeräten, die ihn von der Seite und von oben zeigen, an einer Zoom-Konferenz mit Dr. Martin und den Studierenden teilnimmt. Auf Zuruf kann Dr. Gleßmer jetzt Parameter verändern und die Studierenden können den Effekt aus der ersten Reihe beobachten und in der Konferenz diskutieren.

Bei dieser virtuellen Exkursion konnten Studierende durch Zuruf direkt das rotierende Experiment beeinflussen. Über zwei Endgeräte konnten sie das Experiment von der Seite und von oben beobachten und die Ergebnisse mit ihren eigenen, nicht-rotierenden Experimenten vergleichen. Als Backup, Vor- und Nachbereitung haben wir die Experimente mit dem gleichen Setup gefilmt und online zur Verfügung gestellt.

Abbildung 6: Dr. Gleßmer zeigt in diesem Video den Einfluss von Rotation auf Turbulenz (links im Bild der rotierende Tank in Seiten- und Aufsicht, rechts der nicht-rotierende Fall)

Unser Fazit? Für eine spontane Lösung ist uns das ziemlich gut geglückt. Auch hier steht am Ende die Erfahrung, dass es für einige Studierende eine wichtige, in der Vergangenheit oftmals vernachlässigte Komponente ist, Theorie tatsächlich „begreifen“ zu können. Mit einfachsten Mitteln lässt sich zuhause zumindest die Motivation für die nächste online Vorlesung deutlich steigern. Aber wir freuen uns auf die Zeiten, wenn wir mit unseren Studierenden wieder gemeinsam in einem Raum experimentieren können!

A scicomm comic on Rossby waves and hands-on teaching

Last year in pre-social distancing times, Torge and I brought hands-on rotating tank experiments into his “atmosphere and ocean dynamics” class. The “dry theory to juicy reality” project was a lot of fun — the affordable DIYnamics rotating tables are great to give students hands-on experiences in small groups and to see — by running the same experiment on four rotating tables in parallel — how the same experimental setup can lead to very different realizations because of tiny differences in boundary conditions.

Instead of a classical lab report, we asked students to write a pupular science text about an experiment of their choosing. We got lots of great results (see all of them on our blog “Teaching Ocean Science“), but there is one that particularly stood out to me, and the author, Johanna Knauf, kindly agreed to me publishing it here. Enjoy!


I am super impressed with this comic, and also increadibly flattered and touched. This comic is the most meaningful feedback on my teaching and science communication I ever got and that I can possibly imagine. Thank you, Johanna!

P.S.: Curious about how we modified the project to work with social distancing? Check it out here!

Tilting frontal surface under rotation / cylinder collapse

Torge and I are planning to run the “tilting of a frontal surface under rotation / cylinder collapse” experiment as “remote kitchen oceanography” in his class on Thursday, so I’ve been practicing it today. It didn’t work out quite as well as it did when Pierre and I were running it in Bergen years ago, so if you are looking for my best movie of that experiment, you should go read the old blog post.

The idea is that a density front is set up by spinning up a tank in which a bottom-less cylinder contains a denser fluid, set up into a less dense fluid. Once the tank is spun up, the cylinder is removed, releasing the denser fluid into the less dense one. In contrast to the non-rotating case, where the dense water would sink to the bottom of the tank and form a layer underneath the less dense water, here the cylinder changes its shape to form a cone that retains its shape. The slope of the front is determined by both the rotation rate and the density contrast.

What I can show you today is what it looks like on my DIYnamics rotating table in my kitchen (and it’s pretty cool that all these different experiments can be run on such a simple setup, isn’t it?!). This is from two weeks ago:

And a second attempt done today (I’m not showing you all the failed ones in between, and since I’m a little sick, I’m also not showing you what I look like, and spare you the sound of my incoherend explanations ;-)). But: Now everything is set up so I can use my right hand to pull out the cylinder to introduce fewer disturbances (spoiler alert: didn’t work out — see all the waves on the tank after I remove the cylinder?)

Check out the flower “floats” — the ones on the remains of the cylinder are rotating in the same direction as the tank, only faster! That’s something we didn’t show in Bergen and that I think is really neat.

What I learned about how to set up the experiment: I filled the cylinder with ice cubes and then filled water into the donut outside of the cylinder. That way, water pressure would push water through the petroleum jelly seal at the bottom of the cylinder inside, but the dye of the melting ice cubes would not seep out (very much). Also, the cold melt water would make the water inside the cylinder denser (make sure to stir!). The whole fancy “get water out and refill using a syringe” stuff sounds nice but just isn’t feasible in my setup…

In this case, having a larger tank would be really helpful, because the disturbances introduced in either case are probably more or less the same, but the smaller the tank, the larger the relative effect of a disturbance… Also, my tripod was making it really difficult for me to reach into the tank without hitting it, both for filling the tank and for removing the cylinder. I guess if we didn’t need a top view, things would be a lot easier… ;-)

Rotating vs non-rotating turbulence

Last Thursday, Torge & I invited his “atmosphere & ocean dynamics class” to a virtual excursion into my kitchen — to do some cool experiments. As you know, I have the DIYnamics rotating table setup at home, so this is what it looked like:

We did two experiments, the very boring (but very important) solid body rotation, and then the much more exciting (and quite pretty, see pic at the very top or movie below!) comparison of turbulence in a non-rotating and a rotating system.

We didn’t manage to record the class as we had planned, so I redid & recorded the experiments. Here are 8 minutes of me talking you through it. Enjoy!

A common misconception in rotating tank experiments, and one way of maybe not reinforcing it

A very common misconception when looking at atmosphere & ocean dynamics in a rotating tank is that the center of the tank represents one of the poles and the edge of the tank the equator. And there is one experiment that — I fear — might reinforce that misconception, and that is the one we love to show for rotation vs thermal forcing, baroclinic instabilities (fast
rotation), Hadley cell circulation (slow rotation).

When we do this experiment, the tank looks like a polar stereographic view of the Earth, with the pole (represented by the blue ice in the picture below) in the center and the equator at the edge of the tank. And when we then talk about the eddies we see as representing weather pattern, it’s all too easy to assume that the Coriolis parameter also varies throughout the tank similarly as it would on Earth, only projected down into the tank. Which is not the case!

But the good news is that it’s super easy to drive this experiment by heating rather than cooling in the center of the tank. The physics are exactly the same, only the heat transport is now happening radially outward rather than radially inward. And that it’s now not the easiest assumption any more that we are looking down at the pole.

Also: Heating in the middle is a lot easier to do spontaneously than cooling using ice — no overnight stay in the fridge required, just a kettle! :-)

What are other misconceptions related to rotating tanks that you commonly come across? And do you have any advice on how to prevent these misconceptions or elicit, confront, resolve them?

Solid body rotation

Several of my friends were planning on teaching with DIYnamics rotating tables right now. Unfortunately, that’s currently impossible. Fortunately, though, I have one at home and enjoy playing with it enough that I’m

  1. Playing with it
  2. Making videos of me playing with it
  3. Putting the videos on the internet
  4. Going to do video calls with my friends’ classes, so that the students can at least “remote control” the hands-on experiments they were supposed to be doing themselves.

Here is me introducing the setup:

Today, I want to share a video I filmed the spinup of a tank until it reaches solid body rotation. To be clear: This is not a polished, stand-alone teaching video. It’s me rambling while playing. It’s supposed to give students an initial idea of an experiment we’ll be doing together during a video call, and that they’ll be discussing in much more depth in class. Watching a tank until it reaches olid body rotation is probably the most boding tank experiment ever done, but understanding the concept of solid body rotation and why we need it in tank experiments is the foundation of everything we do on a rotating tank. So here we go!

Thermal forcing vs rotation tank experiments in more detail than you ever wanted to know

This is the long version of the two full “low latitude, laminar, tropical Hadley circulation” and “baroclinic instability, eddying, extra-tropical circulation” experiments. A much shorter version (that also includes the end cases “no rotation” and “no thermal forcing”) can be found here.

Several of my friends were planning on teaching with DIYnamics rotating tables right now. Unfortunately, that’s currently impossible. Fortunately, though, I have one at home and enjoy playing with it enough that I’m

  1. Playing with it
  2. Making videos of me playing with it
  3. Putting the videos on the internet
  4. Going to do video calls with my friends’ classes, so that the students can at least “remote control” the hands-on experiments they were supposed to be doing themselves.

Here is me introducing the setup:

Today, I want to share a video I filmed on thermal forcing vs rotation. To be clear: This is not a polished, stand-alone teaching video. It’s me rambling while playing. It’s supposed to give students an initial idea of an experiment we’ll be doing together during a video call, and that they’ll be discussing in much more depth in class. It’s also meant to prepare them for more “polished” videos, which are sometimes so polished that it’s hard to actually see what’s going on. If everything looks too perfect it almost looks unreal, know what I mean? Anyway, this is as authentic as it gets, me playing in my kitchen. Welcome! :-)

In the video, I am showing the two full experiments: For small rotations we get a low latitude, laminar, tropical Hadley circulation case. Spinning faster, we get a baroclinic instability, eddying, extra-tropical case. And as you’ll see, I didn’t know which circulation I was going to get beforehand, because I didn’t do the maths before running it. I like surprises, and luckily it worked out well!