Tag Archives: cloud

April weather in September (Great for #WaveWatching and cloud watching!)

Minutes after drawing the illustration to the “you are not a drop in the ocean, you are the ocean in a drop” quote I shared yesterday in the most beautiful sunshine, the sky started looking like this.

Luckily I had a nice spot from which I could observe what happened next…

…lots of drops. In the ocean. Or oceans in the drops? Who knows. Anyway, after just having done that drop drawing, I couldn’t very well get upset, and I love watching rain on water anyway.

Just look at all the wave rings, and the way drops are catapulted up again only through surface tension!

Here is a (first normal speed, then slow motion) video so you can appreciate it properly, too:

As the rain passed, I found it super impressive to watch the rain showers as they went down elsewhere.

Like over the mouth of Kiel fjord, and I am showing the same spot repeatedly in the following (with more or less the same view, you can use the buoy as point of reference).

I don’t know enough about meteorology to understand what’s going on there, but I can still appreciate the beauty of the rain cloud and how differently things look where it is propagating to (to the right) and where it has already left (to the left).

See how much lower the clouds on the right are, and clearly a different kind of cloud compared to the ones on the left?

At times, it got really dark.

And I watched this one cloud move, continuously raining.

Then there was a dry period of a couple of hours, and when I walked home, it looked like this: Again distinct areas with rain showers.

What I found also really interesting is the swimmer’s wake you see below. There is so much to see in that one picture: The wake, the rain shower in the background, the changing surface roughness from rougher, darker areas, and smoother, lighter areas, and then the areas in the foreground where we can look into the water (see here for why we can do that in some places and not in others)

Same thing as above, only in a different picture…

And again, this time with a really impressive black cloud. And interference pattern in the waves in the foreground.

And now even ring waves that that seagull made…

And as if I hadn’t had enough wave watching in one day, here is a different spot in the afternoon. See the interference pattern as waves get refracted around the bollard?

And, of course, another strong shower came and made us retreat to the inside. But see the rainbow in the picture below? Those are the kind of things that make me really happy! :-)

Atmospheric & water wave watching

What I find really fascinating about watching waves in the atmosphere rather than on water is that all the waves that become visible are not surface waves like on water, but internal waves. Which we have to go to great lengths to make visible in water (for example by adding dyes in tank experiments) but which we can’t just visually observe in the sea in the same way as we can in a transparent atmosphere.

In the atmosphere, however, we also don’t see every internal wave going on, either, we need very specific conditions for them to become visible. So whenever I see one, I start pondering why we see exactly what we see, why there are clouds in some places and not in others. Below, for example, we see the troughs of an internal waves in cloud stripes, but the crests don’t form clouds. Fascinating how just displacing air by a little bit can cause clouds to form and to disappear!

And things become super cool when you combine atmospheric wave watching with “normal” wave watching like in the picture above. There you see the rough surface with tiny little wind waves in the background, waves coming around the break water, the calm water in the lee of the break water, sheltered from the wind, and then the reflection of the atmospheric waves on the water.

And you thought it couldn’t get any better? Well, you were wrong! Now there are also some waves on the water, plus soap bubbles! :-)

Now, for a thought experiment: What would soap do to the waves? Would destroying surface tension actually matter? I think not in this case, or t least not close to land in the picture above, since the waves are mainly gravity waves, not capillary waves. But what do you think?

#wavewatching in the sky

On Elin’s student cruise (read more about that here) very nice wave watching was to be had, both on the water as well as in the sky.

In the picture below, if you look slightly left of the mountain top in the right of the picture, you see five parallel cloud stripes — evidence of the air moving in a wave motion after going over that mountain top! This motion results in clouds being there for certain phases of the waves and then no clouds for others, and since the movement is periodic, this results in cloud stripes. Now if I knew more about cloud formation I could probably tell you what changes with height except for pressure, and how that results in cloud formation or no cloud formation, and hence whether the cloud stripes indicate wave crests or wave troughs. My gut says troughs. Does anyone know?

Another very nice wave pattern is seen below: Kelvin-Helmholz instabilities! Those are shear instabilities that will eventually start breaking. Unfortunately I went back to work and next time I looked I didn’t find them again.

Fog and clouds in a bottle

A little bit of hands-on meteorology for a change.

This post is inspired by www.planet-science.com‘s “fog in a bottle” and “make a cloud in a bottle” posts. Inspired meaning that I had to try and recreate their experiments after I saw this when approaching Zurich airport recently:

IMG_0301

Clouds and fog somewhere close to Zurich airport.

So let’s start with fog in a bottle. I’m doing fog in a jar, because it is easier to balance a sieve with ice cubes on a wide-mouthed jar than on a bottle… There is about 2 cm of hot water in the jar and the sieve with ice cubes is put on top to cool the moist air enough for fog to form.

And now the cloud in a bottle. This one is fun! And a lot more impressive in the flesh than in the movie, so try it out yourself! Suck some smoke into a bottle that contains a little water. Close the cap, press and release the bottle and see a cloud forming when you release it. The smoke acts as condensation nuclei here. And pressure changes, temperature changes, yada yada… Anyway, try it yourself!

P.S.: Kristin – erkennst Du die Flasche? Die, die Deine Freundin Dir mitgegeben hatte, damit Du was zu trinken hast, die dann mit in Göteborg war und die ich dem Recycling zuführen sollte? Hat offensichtlich nicht geklappt, aber viele Grüße an Deine Freundin! :-)