## Waves break when they reach a critical steepness

You can quite accurately predict when a wave is going to break. When it will break depends on its steepness, which depends on the slope that it is running up on. So due to the funny beach shape caused by the differential erosion on the upstream and downstream sides of groynes we can watch one and the same wave crest break several meters apart depending on the side of the groyne we look at. Kept me fascinated for the better part of the three days we spent in Hastings, and would have kept me entertained for a lot longer, I am sure, had I not had to go to a conference (and win a poster award there, so it was all worth it in the end ;-))

Here we see a wave breaking on the right side of the groyne, while at the left side the previous wave is still breaking and the one breaking on the right side hasn’t even developed a clear crest yet:

It’s a lot easier to see in a movie. Have fun!

## Types of breaking waves depending on steepness of slope – small scale

Video of different types of breakers – small scale.

In this recent post we talked about types of breakers depending on the steepness of the slope. But even on a single stretch of coast line you can easily observe several kinds of breakers. My friend E lend her cabin on an island just outside of Bergen to me and another friend E for the weekend, and just sitting on the rocks we could observe at least two types of breakers.

In the movie below, you see surging breakers on the first little headland – the water level just raises and falls and no breaking occurs – whereas in the small bay behind the headland and on the next headland the slope is much less steep and here spilling breakers develop. Spilling breakers can also be seen about halfway through the movie on the right hand side beach. Isn’t it awesome how you can see so many concepts on the smallest scales once you start looking for them?

## Waves breaking depending on steepness of the slope

Waves breaking on slopes of different steepnesses.

Depending on a slope’s steepness, waves can break in very different ways. On nearly horizontal beaches, spilling breakers develop. On steeper beaches, plunging breakers, the kind of breakers that form the tunnels that people surf in, form. And on very steep beaches, the breakers don’t actually break, but surge up and down.

This can be seen on  the large scale when different beaches are known for different kinds of breakers, and one impressive example are Oahu’s North Shore plunging breakers that my friend Tobi took me and a couple of friends to see in 2010.

More awesome breakers were to be seen on the Big Island a couple of days later:

And of course I have movies of those breakers for you, too, first Oahu and then Big Island:

## Internal waves in the atmosphere

A photo of internal waves in the atmosphere.

Internal waves exist on the interface between fluids of different densities. In the ocean they are mostly observed through their surface imprint. In the tank, we could also observe them by looking in from the side, but this is hardly feasible in the ocean. But luckily vision is easier in the atmosphere than in the ocean.

On our research cruise on the RRS James Clark Ross in August 2012, we were lucky enough to observe atmospheric internal waves, and even breaking ones (see image above). This is quite a rare sight, and a very spectacular one, especially since, due to the low density contrast between the two layers, the waves break extremely slowly.

It is really hard to imagine what it looked like for real. This movie shows the view of Jan Mayen – the volcano, the rest of the island and then the atmospheric waves. Please excuse the wobbly camera – we were after all on a ship and I was too excited to stabilize properly.