Tag Archives: dispersion relation

Why are they so much slower than I thought? Observing the group velocity vs phase velocity of waves

Have you ever seen a speedboat drive past, looked at its wake moving torwards you, then gotten distracted, and when you look back a little while later been surprised that the wake hasn’t moved as far towards you as you thought it would have during the time you looked away?

Well, I definitely have had that happen many times, and the other day I was sitting on the beach with a friend and we talked about why you initially perceive the waves moving a lot faster than they turn out to be moving in the end. While I didn’t film it then, I’ve been putting my time on the GEOF105 student cruise to good use to check out waves in addition to the cool research going on on the cruise, so now I have a movie showing a similar situation!

But let’s talk a little theory first.

Phase velocity

The phase velocity of a wave is the speed with which you see a wave crest moving.

Waves can be classified into long vs short waves, or deep- vs shallow water waves. But neither deep and shallow, nor long and short are absolute values: They refer to how long a wave is relative to the depth of the water in which it is moving. For short or deep water waves, the wavelength is short relative to the water depth (but can still be tens or even hundreds of meters long if the water is sufficiently deep!). For long or shallow water waves, the wave length is long compared to the water depth (for example Tsunamis are shallow water waves, even though the ocean is on average about 4 km deep).

For those long waves, or shallow water waves, the phase velocity is a function of the water depth, meaning that all shallow water waves all move at the same velocity.

However, what you typically see are deep water waves, and here things are a little more complicated. Since phase velocity depends on wave length, it is different for different waves. That means that there is interference between waves, even when they are travelling in the same direction. So what you end up seeing is the result of many different waves all mixed together.

If you watch the gif below (and if it isn’t moving just give it a little moment to fully load, it should then start), do you see how waves seem to be moving quite fast past the RV Harald Brattstrøm, but once you focus on individual wave crests, they seem to get lost, and the whole field moves more slowly than you initially thought?

That’s the effect caused by the interference of all those waves with slightly different wave lengths, and it’s called the group velocity.

Group velocity

The group velocity is the slower velocity with which you see a wave field propagate. It’s 1/2 of the phase velocity, and it is the velocity with which the signal of a wave field actually propagates. So even though you initially observed wave crests moving across the gif above fairly quickly, the signal of “wave field coming through!” only propagates with half the phase velocity.

Usually you learn about phase and group velocities in a theoretical way and are maybe shown some animations, but I thought it was pretty cool to be able to observe it “in situ!” :-)

Wave watching: Refraction and diffraction of waves

A little more wave watching, today with a focus on how waves change direction when they run into shallow water. Let’s look at this beautiful wave and see what happens when it reaches the shallow shore.

Above, you see the wake of the pilot ship, consisting of many wavelets that propagate as parallel wave crests towards the shore.

Below, you see that the wave is propagating at an angle to the shore (something around 45 degrees, maybe?). If you focus on the wave crest that is just offshore of that little obstacle in the water (curious enough, a piece of brick wall), you clearly observe that angle. But then looking at the next wave crest in-shore, it is almost parallel to the shore! Assuming that both crests come from the same wave field, so that the second one was in the same position as the other one only moments before (which I know it was because I observed it), something clearly happened between then and now.

Refraction of waves

Why do waves change direction as the water depth changes? As waves run from deep into shallow water, at some point they start to “feel” the bottom, which slows them down.

Or, more scientifically speaking, the dispersion relation for shallow water waves is a function of water depth: The shallower the water, the slower the waves. That means that if a wave crest is running on a slope with one side being in shallower water while the other one is still in deeper water, it will change direction towards the shallow water because the shallow side of the crest is slowed down while the deeper side keeps on moving faster, thus forcing the whole crest around a curve.

But in this picture series there is more to see: See how the wave crest gets deformed after it has passed that obstacle?

Diffraction of waves

This is a process called diffraction: The change of direction after a wave crest has passed either through a slit and then starts radiating from that slit as circle segments, or, in this case, an obstacle. The wave passing an obstacle is, in a way, the same as the wave passing through two wide slits which are very close to each other, only separated by the obstacle: The edges of the wave crest at the edges of the “slits” also start radiating out as circle segments!

One spot, so many things to observe!

And there are, of course, ships. What I wanted to show on this picture is a close-up of the turbulent wake of the ship, but it’s really difficult to see so I’ll let that pass for today.

And the picture below shows so much cool stuff: Waves radiating from that pylon. Ripples on the surface by a gust of wind. Wave crests getting a lot steeper as they run up on the slope. And, my main reason for posting: I really like how the wave is spilling as it breaks! :-)

Shallow water waves

Have you ever noticed how, if you are at a shallow beach, no matter how choppy waves are further offshore, everything becomes nice and orderly on the beach?

Below you see where the water depth suddenly increases, both from the color of the water and from the wave pattern. While in deeper water waves propagate at all kinds of speeds depending on their wavelength, the moment the water becomes shallow enough, all waves propagate at the same speed (except for the really short waves for which the water is still deep, but let’s forget about those). If all waves propagate at the same speed, it means that the form of the wave that we observe stays constant over time and just moves as a whole. Hence it looks a lot more tidy than the choppy waves further out.

Funny that in all these years of wave watching, I have never thought about that before!

Watch the movie below to see for yourself

Watch the dispersion relation in action

Remember how we talked about how waves seem to propagate extremely slowly into that calm patch that occurs when a boat pulls away from a dock? Well, the other day I noticed that there is even more physics you can see when watching a similar situation: You see how long waves propagate much faster than short waves (that is for deep water waves, in shallow water the wave speed only depends on water depth, not on wave length)

img_6925

Here you see a formerly smooth patch of water where the Håkon Mosby was until a minute ago, and you see how long waves have already propagated into that smooth patch while shorter waves are everywhere in the choppy water around the smooth patch, but have yet to propagate into it. Now that I think of it I’ve seen this many times before, I just never noticed. It’s even visible in the video I posted with the other blog post.

And here is a video. Note how the long waves invade the smooth spot of water long before the shorter waves do: