Tag Archives: condensation nuclei

A string of bubbles

Have you ever noticed champagne bubbles that form as a string right in the middle of the glass and hardly anywhere else? This leads to the very cool pattern you see here:

Screen shot 2015-11-17 at 4.29.46 PM

Astrid and I recently happened to notice how differently bubbles in champagne and in mineral water behaved. In the mineral water, bubbles formed in random spots along the sides of the glass. In the champagne, they mainly formed in the middle; and formed a string of rapidly forming bubbles.

So now I was hoping for a really interesting explanation of why the bubbles behave so differently. They form at different rates, but that makes sense if the partial pressure of CO2 in both drinks is different. After a bit of research on the web it turns out that fancy champagne glasses have tiny scratches right in the center of the glass to serve as condensation nuclei — in other words: to cause exactly what we observed: A nice string of pearls instead of bubbles forming randomly along the sides of the glass. So theoretically, if we had had our mineral water from the same glasses, we would have observed the same thing in mineral water. What a disappointing explanation!

[vimeo 146250051]

Fog and clouds in a bottle

A little bit of hands-on meteorology for a change.

This post is inspired by www.planet-science.com‘s “fog in a bottle” and “make a cloud in a bottle” posts. Inspired meaning that I had to try and recreate their experiments after I saw this when approaching Zurich airport recently:

IMG_0301

Clouds and fog somewhere close to Zurich airport.

So let’s start with fog in a bottle. I’m doing fog in a jar, because it is easier to balance a sieve with ice cubes on a wide-mouthed jar than on a bottle… There is about 2 cm of hot water in the jar and the sieve with ice cubes is put on top to cool the moist air enough for fog to form.

And now the cloud in a bottle. This one is fun! And a lot more impressive in the flesh than in the movie, so try it out yourself! Suck some smoke into a bottle that contains a little water. Close the cap, press and release the bottle and see a cloud forming when you release it. The smoke acts as condensation nuclei here. And pressure changes, temperature changes, yada yada… Anyway, try it yourself!

P.S.: Kristin – erkennst Du die Flasche? Die, die Deine Freundin Dir mitgegeben hatte, damit Du was zu trinken hast, die dann mit in Göteborg war und die ich dem Recycling zuführen sollte? Hat offensichtlich nicht geklappt, aber viele Grüße an Deine Freundin! :-)