I’ve been leading a lot of workshops and doing consulting on university teaching lately, and one request that comes up over and over again is “just tell me what works!”. Here I am presenting an article that is probably the best place to start.
The famous “visible learning” study by Hattie (2009) compiled pretty much all available articles on teaching and learning, for a broad range of instructional settings. Their main conclusion was that the focus should be on visible learning, which means learning where learning goals are explicit, there is a lot of feedback happening between students and teachers throughout the interactions, and the learning process is an active and evolving endeavour, which both teachers and students reflect on and constantly try to improve.
However, what works at schools does not necessarily have to be the same that works at universities. Students are a highly select group of the general population, the ones that have been successful in the school system. For that group of people, is it still relevant what teaching methods are being used, or is the domain-specific expertise of the instructors combined with skilled students enough to enable learning?
The article “Variables associated with achievement in higher education: A systematic review of meta-analyses” by Schneider & Preckel (2017) systematically brings together what’s known about what works and what doesn’t work in university teaching, and their main findings.
Below, I am presenting the headings of the “ten cornerstone findings” as quotes from the article, but I am providing my own interpretations and thoughts based on their findings.
1. “There is broad empirical evidence related to the question what makes higher education effective.”
Even though instructors might not always be aware of it because literature on university teaching has been theoretical for a long time (or they just don’t have the time to read enough to gain an overview over the existing literature), but these days there is a lot of empirical evidence of what makes university teaching effective!
There is a HUGE body of literature on studies investigating what works and what does not, but results always depend on the exact context of the study: who taught whom where, using what methods, on what topic, … Individual studies can answer what worked in a very specific context, but they don’t usually allow for generalizations.
To help make results of studies more generally valid, scientists bring together all available studies on a particular teaching method, “type” of student or teacher in meta studies. By comparing studies in different context, they can identify success factors of applying that specific method across different contexts, thus making it easier to give more general recommendations of what methods to use, and how.
But then if you aren’t just interested in how to use one method, but what design principles you should be applying in general, you might want to look at systematic reviews of meta-studies. Systematic review of meta-studies bring together everything that has been published on a given topic and try to distill the essence from that. One such systematic review of meta-studies is the one I am presenting here, where the authors have compiled 38 meta-analyses (which were found to be all available meta-analyses relevant to higher education) and thus provide “a broad overview and a general orientation of the variables associated with achievement in higher education”.
2. “Most teaching practices have positive effect sizes, but some have much larger effect sizes than others.”
A big challenge with investigations of teaching effectiveness is that most characteristics of teaching and of learners are related to achievement. So great care needs to be taken in order to not interpret the effect one measures for example in a SoTL project as the optimal effect, because some characteristics and their related effects are much larger than others: “The real question is not whether an instructional method has an effect on achievement but whether it has a higher effect size than alternative approaches.”
This is really important to consider especially for instructors who are (planning on) trying to measure how effective they or their methods are, or who are looking in the literature for hints on what might work for them — it’s not enough to just look if a method does have a positive effect, but to consider whether even more effective alternatives might exist.
3. “The effectivity of courses is strongly related to what teachers do.”
Great news! What we do as teachers does influence how much students learn! And often times it is through really tiny things we do or don’t do, like asking open-ended questions instead of closed-ended ones, writing keywords instead of full sentences on our slides or the blackboard (for more examples, see point 5).
And there are general things within our influence as teachers that positively contribute to student learning, for example showing enthusiasm about the content we are teaching, being available to students and being helpful, and treating the students respectfully and friendly. All these behaviours help create an atmosphere in which students feel comfortable to speak their minds and interact, both with their teacher and among each others.
But it is, of course, also about what methods we chose. For example, choosing to have students work in small groups is on average more effective than having them learn both individually or as the whole group together. And small groups become most effective when students have clear responsibilities for tasks and when the group depends on all students’ inputs in order to solve the task. Cooperation and social interaction can only work when students are actively engaged, speak about their experiences, knowledge and ideas, discuss and evaluate arguments. This is what makes it so successful for learning.
4. “The effectivity of teaching methods depends on how they are implemented.”
It would be nice to know that just by using certain methods, we can increase teaching effectivity, but unfortunately they also need to be implemented in the right way. Methods can work better or not so well, depending on how they are done. For example, asking questions is not enough, we should be asking open instead of closed questions. So it is not only about using large methods, but to tweak the small moments to be conductive to learning (examples for how to do that under point 5)
Since microstructure (all the small details in teaching) is so important, it is not surprising that the more time teachers put into planning details of their courses, the higher student achievement becomes. Everything needs to be adapted to the context of each course: who the students are and what the content is. This is work!
5. “Teachers can improve the instructional quality of their courses by making a number of small changes.”
So now that we know that teachers can increase how much students learn in their classes, here is a list of what works (and many of those points are small and easy to implement!)
- Class attendance is really important for student learning. Encourage students to attend classes regularly!
- Make sure to create the culture of asking questions and engaging in discussion, for example by asking open-ended questions.
- Be really clear about the learning goals, so you can plan better and students can work towards the correct goals, not to wrong ones that they accidentally assumed.
- Help students see how what you teach is relevant to their lives, their goals, their dreams!
- Give feedback often, and make sure it is focussed on the tasks at hand and given in a way that students can use it in order to improve.
- Be friendly and respectful towards students (duh!),
- Combine spoken words with visualizations or texts, but
- When presenting slides, use only a few keywords, not half or full sentences
- Don’t put details in a presentation that don’t need to be there, not for decoration or any other purpose. They are only distracting from what you really want to show
- When you are showing a dynamic visualization (simulation or movie), give an oral rather than a written explanation with it, so the focus isn’t split between two things to look at. For static pictures, this isn’t as important.
- Use concept maps! Let students construct them themselves to organize and discuss central ideas of the course. If you provide concept maps, make sure they don’t contain too many details.
- Start each class with some form of “advance organizer” — give an overview over the topics you want to go through and the structure in which that will happen.
Even though all these points are small and easy to implement, their combined effect can be large!
6. “The combination of teacher-centered and student-centered instructional elements is more effective than either form of instruction alone.”
There was no meta-analysis directly comparing teacher-centered and student-centered teaching methods, but elements of both have high effects on student learning. The best solution is to use a combination of both, for example complementing teacher presentations by interactive elements, or having the teacher direct parts of student projects.
Social interaction is really important and maximally effective when teachers on the one hand take on the responsibility to explicitly prepare and guide activities and steer student interactions, while on the other hand giving students the space to think for themselves, choose their own paths and make their own experiences. This means that ideally we would integrate opportunities for interaction in more teacher-centered formats like lectures, as well as making sure that student-centered forms of learning (like small groups or project-based learning) are supervised and steered by the instructor.
7. “Educational technology is most effective when it complements classroom interaction.”
We didn’t have a lot of choice in the recent rise of online learning, but the good news is that it can be pretty much as effective as in-person learning in the classroom. Blended learning, i.e. combining online and in-class instruction, is even more effective, especially when it is used purposefully for visualizations and such.
Blended learning is not as successful as in-person learning when used mainly to support communication; compared to in-person, online communication is limiting social interaction (or at least it was before everybody got used to it during covid-19? Also, the article points out explicitly that instructional technologies are developing quickly and that only studies were included that were published before 2014. Therefore MOOCs, clickers, social media and other newer technologies are not included).
8. “Assessment practices are about as important as presentation practices.”
Despite constructive alignment being one of the buzzwords that is everywhere these days, the focus of most instructors is still on the presentation part of their courses, and not equally on assessment. But the results presented in the article indicate that “assessment practices are related to achievement about as strongly as presentation practices”!
But assessment does not only mean developing exam questions. It also means being explicit about learning goals and what it would look like if they were met. Learning outcomes are so important! For the instructor to plan the whole course or a single class, to develop meaningful tests of learning and then actually evaluating it, in order to give feedback to students. Students, on the other hand, need guidance on what they should focus on both in reflecting on what they learned during past lessons, preparing for future lessons, and preparing for the exam.
Assessment also means giving formative feedback (feedback with the explicit and only purpose of helping students learn or teachers improve teaching, not giving a final evaluation after the fact) throughout the whole teaching process.
Assessment also doesn’t only mean the final exam, it can also mean smaller exercises or tasks throughout the course. Testing frequently (more than two or three times per semester) helps students learn more. Requiring that students show they’ve learnt what they were supposed to learn before the instructor moves on to the next topic has a large influence on learning. And the frequent feedback that can be provided on that basis helps them learn even more.
And: assessment can also mean student-peer assessment or student self-assessment, which agree on average fairly well with assessment by the instructor but have the added benefit of explicitly thinking about learning outcomes and whether they have been achieved. Of course, this is only possible when learning outcomes are made explicit.
The assessment part is so important, because students optimize where to spend their time based on what they perceive as important, which is often related to what they will need to be able to do in order to pass an exam. The explicit nature of the learning outcomes (and their alignment with the exam) are what students use to decide what to spend time and attention on.
9. “Intelligence and prior achievement are closely related to achievement in higher education.”
Even though we as instructors have a large influence on student achievement by all the means described above, there are also student characteristics that influence how well students can achieve. Intelligence and prior achievement are correlated to how well pupils will do at university (although both are not fixed characteristics that students are born with, but formed by how much and what quality of education students attended up to that point). If we want better students, we need better schools.
10. “Students’ strategies are more directly associated with achievement than students’ personality or personal context.”
Despite student backgrounds and personalities being important for student achievement, even more important are what strategies they are using to learn, to prepare for exams, to set goals and regulate how much effort they put on what task. Successful strategies are frequent class attendance as well as a strategic approach to learning, meaning that instead of working hard non stop, students allocate time and effort to those topics and problems that are most important. But also on the small scale, what students do matters: Note taking, for example, is a much more successful strategy when students are listening to a talk without slides. When slides are present, the back-and-forth between slides and notes seems to distract students from learning.
Training strategies works best in class rather than outside in extra courses with artificial problems.
So where do we go from here?
There you have it, that was my summary of the Schneider & Preckel (2017) systematic review of meta-analyses of what works in higher education. We know now of many things that work pretty much universally, but even though many of the small practices are easy to implement, it still doesn’t tell us what methods to use for our specific class and topic. So where do we go from here? Here are a couple of points to consider:
Look for examples in your discipline! What works in your discipline might be published in literature that was either not yet used in meta-studies, or published in a meta-study after 2014 (and thus did not get included in this study). So a quick literature search might be very useful! In addition to published scientific studies, there is a wealth of information available online of what instructors perceive to be best practice (for example SERC’s Teach the Earth collection, blogs like this one, tweets collected under hashtags like #FieldWorkFix, #HigherEd). And of course always talk to people teaching the same course at a different institution or who taught it previously at yours!
Look for examples close to home! What works and what doesn’t is also culture dependent. Try to find out what works in similar courses at your institution or a neighboring one with the same or a similar student body and similar learning outcomes?
And last not least: Share your own experiences with colleagues! Via twitter, blogs, workshops, seminars. It’s always good to share experiences and discuss! And on that note — do you have any comments on this blog post? I’d love to hear from you! :)
Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychological bulletin, 143(6), 565.