Tag Archives: science communication

Communicating Climate Change — a book you should definitely know about!

In a presentation about science communication I gave on Monday, I recommended a couple of resources for scientists interested in science communication. For example the amazing climatevisuals.org for advice on which images to use to communicate about climate change (plus lots of images that even come with explanations for what purpose they work well, and why!). And of course my #scicommchall to get people inspired to try out a new micro scicomm format every month.

But here is an (open access!) book I wish I had known about then already but only came across two days after my presentation: “Communicating Climate Change” by A. K. Armstrong, M. E. Krasny, J. P. Schuldt (2018).

This is a book aimed at educators who want to communicate climate change in a literature-based and effective manner. It consists of four parts: A background, the psychology of climate change, communication, and stories from the field, which I will briefly review below (and you should definitely check out the real thing!). It’s nice and easy to read, and there are “bottom line for educators” at the end of each chapter as well as recaps at the end of each part, making it easy to get a quick overview even if you might not have the time to read the whole thing in detail.

Background

This part of the book begins with an introduction to climate change science, reporting state-of-the-art science on climate, greenhouse gases, evidence for climate change, and climate impacts. It then moves to how climate change can be addressed: by mitigating or adapting to its effects, how it is important to reduce greenhouse gas emissions, and how that can be achieved both on an individual level and by collective action. It ends with a “bottom line for educators” summary that stresses that climate change is real, that misinformation campaigns are an unfortunate reality, and that educators can contribute to solving the problem.

The next chapter then deals with what is known on attitudes and knowledge about climate change in different audiences internationally and at different ages, explaining that attitudes are actually a pretty bad predictor for behaviour, but nevertheless important to know about if you are an educator! For example, if you want teens to be concerned about climate change, a useful approach might be to involve their parents along with them, since what family and friends believe about climate change is very important to what an individual teenager believes, as is how often they discuss climate topics with their friends and family. Again, the “bottom line for educators” breaks this down into advice, for example to focus on different topics depending on how concerned about climate change a given audience already is, or to focus on areas in which a common ground between them and their audiences exists in order to generate a constructive and positive dialogue even though there might still be areas in which they do not agree with their audiences (which they should think about beforehand, hence the importance to know about the audience’s attitudes).

The next chapter suggests possible outcomes for climate change education — how do we know if a climate change communication activity was successful? — and stresses the importance of defining these goals in the first place. Outcomes can be defined on the level of individuals, of communities, of the environment, or of resilience of all of the above. For individuals, outcomes could for example be literacy (understanding essential principles, knowledge of how to assess scientifically credible information, ability to communicate, ability to make informed and responsible decisions) of climate change, or attitudes and emotions, the feeling of confidence that you can reach your goals, or environmentally friendly behaviour. For communities, outcomes could be positive development of youth, building of social capital (e.g. trust or positive action), the belief that the community can reach a goal together, or action taken together by the whole community. Focussing on the environment, an outcome could be adaptation to, or mitigation of, climate change.

The next chapter then presents three climate change vignettes — three examples of how different educators address different audiences in different settings — and a discussion of why they chose to design their activity a certain way and react to questions or comments the way they did.

The psychology of climate change

This part of the book presents psychology research on why knowledge about climate change is not sufficient to actually change behaviours.

Identity research especially is very helpful, as it explains how in order to feel like you are part of a group (something that we as humans are hard-wired to crave) we tend to conform with our group’s norms and values. We might be part of different groups at different times as well as simultaneously (for example our family as one and our colleagues as another, or inhabitant of a city, or student of oceanography), and contexts trigger specific identities that might even not be completely congruent with each other. When new information is presented, we interpret it in a way that does not threaten our identity in the context the information is presented in. Therefore, in order to not threaten anybody’s identity and making it impossible for them to take on our message, it is important to make sure that climate change is not communicated as something polarising or political, but rather choose to trigger identities that are inclusive, like for example “inhabitant of place x”, and focus on outcomes that benefit that community independent of what other identities might exist, by for example protecting a local beach.

Psychological distance is another lens through which climate change communication can be viewed. The more distant a problem seems, the less important it is perceived. Therefore focussing on local relevance rather than global, on places that are important to people, on communities they care about, might in some cases be helpful — although not always; the results of the research on this are not conclusive yet.

Then a few other relevant psychological research areas are discussed, like for example “terror management theory”. This leads to the recommendation to avoid “doom and gloom” presentations of climate change that might kick people into a defence mechanism of ignoring the topic to protect their emotional well-being in the moment, and to focus on hope and positive action instead. Then there is the “cognitive dissonance theory”, according to which we try to ignore information that conflicts with what we think we already know or threatens other goals we might have. The recommendation here is to give people ideas of easy things they can do to combat climate change to combat cognitive dissonance.

Communication

This part of the book presents three aspects of communicating climate change: How we frame it, which analogies and metaphors we use, and how we, as a messenger, can build trust.

“Framing” is about how a message is featured in a story line to help the audience interpret it in a certain way, by making certain aspects of it especially visible, for example economic aspects or tipping points. When thinking about framing a climate change message, it is important to think about audiences and their identities and to avoid wording that will trigger identities which make it difficult to accept the message. Depending on the desired outcomes, climate change communications could, for example, be framed for solutions, hope, or values. There are ways to build entire climate change communication programs around those frames, and there are several examples given for how this might be done.

The next chapter focusses on analogies and metaphors. For example, “osteoporosis of the sea” (which I had never heard in use before) has been found to be a successful metaphor for ocean acidification. However, as all metaphors, it only highlights similarities between issues and neglects to mention the dissimilarities which makes them tricky to use because it’s hard to make sure people don’t take a metaphor so far that it breaks down. In fact, to address this problem, the authors recommend to explicitly talk about where the analogy or metaphor will break down.

Establishing trust in the climate change messengers: This is tricky as people tend to trust other people that hold values similar to their own. Therefore it is helpful to think about the messenger and to use trusted middle persons. [There is are actually some very interesting work on trust out there, for example by Hendriks, Kienhues and Bromme (2015) that isn’t mentioned in the book, but that I’d be happy to summarise for you if anyone is interested!]

Stories from the field

The book ends with a part called “stories from the field” in which examples of different climate change communication activities, focussing on different goals, audiences, messenges and happening in very different settings, are given and the design choices that were made explained in detail. Also for each of the story, an example is given how the message is phrased in actual interaction with the target audience. All of this is super interesting to read because all the theory the book provided in the previous chapters is applied to real world cases, which makes it easy to see how they might be applied to your own climate change communication activities. Also these best practice examples are inspiring to see and give me a sense of hope.

To sum up: I really enjoyed reading this book! So much so that continuing reading it was more important than getting a good Instagram pic of my latte while writing this blogpost. I would really recommend anyone interested in climate change communication to check it out! When I finished my talk on Monday, on my second to last slide I put the African proverb along the lines of “if you think you are too small to make a difference, try going to sleep with a mosquito in the room”. I used this to talk about using messages of hope in climate change communication, and then also applied it to science communication — don’t think you are too small to make a difference there, either! And that’s a message that this book conveys really well, too, providing a good idea of what one could do and how one might go about it, and inspiring one — or at least me — to do so, too.

I am missing institute seminars! Or: Why we should talk to people who use different methods

You probably know that I have recently changed my research focus quite dramatically, from physical oceanography to science communication research. What that means is that I am a total newbie (well, not total any more, but still on a very steep learning curve), and that I really appreciate listening to talks from a broad range of topics in my new field to get a feel for the lay of the land, so to speak. We do have institute seminars at my current work place, but they only take place like once a month, and I just realized how much I miss getting input on many different things on at least a weekly basis without having to explicitly seek them out. To be fair, it’s also summer vacation time and nobody seems to be around right now…

But anyway, I want to talk about why it is important that people not only of different disciplines talk, but also people from within the same discipline that use different approaches. I’ll use my first article (Simulated impact of double-diffusive mixing on physical and biogeochemical upper ocean properties by Glessmer, Oschlies, and Yool (2008)) to illustrate my point.

I don’t really know how it happened, but by my fourth year at university, I was absolutely determined to work on how this teeny tiny process, double-diffusive mixing (that I had seen in tank experiments in a class), would influence the results of an ocean model (as I was working as student research assistant in the modelling group). And luckily I found a supervisor who would not only let me do it, but excitedly supported me in doing it.

Double-diffusive mixing, for those of you who don’t recall, looks something like this when done in a tank experiment:

IMG_9084

And yep, that’s me in the reflection right there :-)

Why should anyone care about something so tiny?

Obviously, there is a lot of value in doing research to satisfy curiosity. But for a lot of climate sciences, one important motivation for the research is that ultimately, we want to be able to predict climate, and that means that we need good climate models. Climate models are used as basis for policy decisions and therefore should represent the past as well as the present and future (under given forcing scenarios) as accurately as possible.

Why do we need to know about double-diffusive mixing if we want to model climate?

Many processes are not actually resolved in the model, but rather “parameterized”, i.e. represented by functions that estimate the influence of the process. And one process that is parameterized is double-diffusive mixing, because its scale (even though in the ocean the scale is typically larger than in the picture above) is too small to be represented.

Mixing, both in ocean models and in the real world, influences many things:

  • By mixing temperature and salinity (not with each other, obviously, but warmer waters with colder, and at the same time more salty waters with less salty), we change density of the water, which is a function of both temperature and salinity. By changing density, we are possibly changing ocean currents.
  • At the same, other tracers are influenced: Waters with more nutrients mix with waters with less, for example. Also changed currents might now supply nutrient-rich waters to other regions than they did before. This has an impact on biogeochemistry — stuff (yes, I am a physical oceanographer) grows in other regions than before, or gets remineralized in different places and at different rates, etc.
  • A change in biogeochemistry combined with a changed circulation can lead to changed air-sea fluxes of, for example, oxygen, CO2, nitrous oxide, or other trace gases, and then you have your influence on the atmosphere right there.

What are the benefits of including tiny processes in climate models?

Obviously, studying the influence of individual processes leads to a better understanding of ocean physics, which is a great goal in itself. But that can also ultimately lead to better models, better predictions, better foundation for policies. But my main point here isn’t even what exactly we need to include or not, it is that we need a better flow of information, and a better culture of exchange.

Talk to each other!

And this is where this tale connects to me missing institute seminars: I feel like there are too few opportunities for exchange of ideas across research groups, for learning about stuff that doesn’t seem to have a direct relevance to my own research (so I wouldn’t know that I should be reading up on it) but that I should still be aware of in case it suddenly becomes relevant.

What we need is that, staying in the example of my double-diffusive mixing article, is that modellers keep exploring the impact of seemingly irrelevant changes to parameterizations or even the way things are coded. And if you aren’t doing it yourself, still keep it in the back of your head that really small changes might have a big influence, and listen to people working on all kinds of stuff that doesn’t seem to have a direct impact on your own research. In case of including the parameterization of double-diffusive mixing, oceanic CO2 uptake is enhanced by approximately 7% of the anthropogenic CO2 signal compared to a control run! And then there might be a climate sensitivity of processes, i.e. double-diffusive mixing happening in many ore places under a climate that has lead to a different oceanic stratification. If we aren’t even aware of this process, how can we possibly hope that our model will produce at least semi-sensible results? And what we also need are that the sea going and/or experimental oceanographers keep pushing their research to the attention of modellers. Or, if we want less pushing: more opportunities for and interest in exchanging with people from slightly different niches than our own!

One opportunity just like that is coming up soon, when I and others will be writing from Grenoble about Elin Darelius and her team’s research on Antarctic stuff in a 12-m-diameter rotating tank. Imagine that. A water tank of that size, rotating! To simulate the influence of Earth’s rotation on ocean current. And we’ll be putting topography in that! Stay tuned, it will get really exciting for all of us, and all of you! :-)

P.S.: My #COMPASSMessageBox for this blogpost below. I really like working with this tool! Read more about the #COMPASSMessageBox.

message_box_dd

And here is the full citation: Glessmer, M. S., Oschlies, A., & Yool, A. (2008). Simulated impact of double‐diffusive mixing on physical and biogeochemical upper ocean properties. Journal of Geophysical Research: Oceans, 113(C8).

What you know about science is not necessarily what you believe about science

I’ve been working in science communication research for a good half a year now, and my views on outreach are constantly evolving. When I applied for this job, I was convinced that if only the public knew what we (the scientists) know, they would take better decisions. So all we need to do is inform the public, preferably using entertaining and engaging methods. However, I soon came to learn that this is known as the “deficit model” and that there is a lot of research saying that life isn’t that easy. Like, at all.

One article I really like makes it very clear that knowledge about what science says is not at all the same as believing in what science says. The article Climate-Science Communication and the Measurement Problem by Kahan (2015) (btw, a really entertaining read!) describes how changing a question on a questionnaire from “Human beings, as we know them today, developed from earlier species of animals” to “According to the theory of evolution, human beings, as we know them today, developed from earlier species of animals” has a big impact: While in the first case, religiosity of the respondents had a huge impact and even highly educated religious people are very likely to answer “no”, in the second case religious and non-religious people answer similarly correctly. So clearly the knowledge of what evolution theory says is there in both cases, but only in the latter case that knowledge becomes relevant in answering the question. In the first case, the respondents cultural identity dictates a different answer than in the second case, where the question is only about science comprehension, not about beliefs and identity. As the author says: a question about ““belief in” evolution measures “who one is” rather than “what one knows””.

The author then moves on to study knowledge and beliefs about climate change and finds the same thing: the relationship between science comprehension and belief in climate change depends on the respondents’ identities. The more concerned someone is about climate change due to their cultural background, the more concerned they become as their level of science comprehension increases. The more sceptical someone is, the more sceptical he becomes with increasing science comprehension: “Far from increasing the likelihood that individuals will agree that human activity is causing climate change, higher science comprehension just makes the response that a person gives to a “global- warming belief” item an even more reliable indicator of who he or she is.”

So knowledge (or lack thereof) clearly isn’t the problem we face in climate change communication — the problem is the entanglement of knowledge and identity. What can we do to disentangle the two? According to the article, it is most important to not reinforce the association of opposing positions with membership in competing groups. The higher-profile the communicators on the front lines, the more they force individuals to construe evidence that supports the claims of those high-profile members of their group in order to feel as part of that group and protect their identity. Which is pretty much the opposite of how climate science has been communicated in the last years. Stay tuned while we work on developing good alternatives, but don’t hold your breath just yet ;-)


Kahan, D. M. (2015). Climate-Science Communication and the Measurement Problem Political Psychology, 36, 1-43