Why the Isère reminds me of a water jet pump

This is what the way to and from the 13-meter-diameter rotating tank in Grenoble looks like (and you should really visit Elin & team’s blog to learn about all the exciting stuff we are doing there!!!)

And the best part is the Isère right next to the bike path:

And one thing that I find really impressive with this river (coming from a much flatter part of the world than Grenoble, where rivers aren’t typically as fast-flowing as the Isère) is how all these return flow pools form everywhere.

Watch the movie below to spot them yourself, or my annotated picture below:

2017-09-09-09-49-42-copy

It seems really counterintuitive that a strong current would make water on it’s side flow upstream instead of flushing everything downstream or even just going downstream through stagnant water, doesn’t it? But when I thought about why that is, it reminded me of the way a water jet pump works: You flush water from a tap down through a hose, and that hose is connected with another hose through which you want to suck something (usually some gas out of some container). So there it’s the same: The fast-flowing water pulls things in from the side and takes them with it. Now for continuity reasons, the water that is entrained in the jet needs to come from somewhere, so water has to be brought upstream in order to get sucked into the jet. That’s also similar to playing with Venturi tubes where the thinner the tube, the faster the flow, the lower the pressure… Anyway, riddle solved and I can think about other stuff again ;-)

But it is a really beautiful place to be:

2017-09-09-20-05-02

I like water so much better than mountains, but mountains still have their charms, can’t deny that…

 

 

Reading ice on a river as tracer for flow fields

Ice on Elbe river in Hamburg. By Mirjam S. Glessmer

For most of my readers it might be pretty obvious what the movement of floating ice says about the flow field “below”, but most “normal” people would probably not even notice that there is something to see. So I want to present a couple of pictures and observations today to help you talk to the people around you and maybe get them interested in observing the world around them more closely (or at least the water-covered parts of the world around them ;-)).

For example, we see exactly where the pillars of the bridge I was standing on are located in the river, just by looking at the ice:

What exactly is happening at those pillars can be seen even more clearly when looking at a different one below. You see the ice piling up on the upstream side of the pillar, and the wake in the lee. Some smaller ice floes get caught in the return flow just behind the pillar. Now imagine the same thing for a larger pillar – that’s exactly what we saw above!

And then we can also see that we are dealing with a tidal river. Looking at the direction of the current only helps half of the time only, and only if we know something about the geography to know which way the river is supposed to be going.

But look at the picture below: There we see sheets of ice propped up the rails where the rails meet the ice, and more sheets of ice all over the shore line. As the water level drops due to tides, newly formed ice falls dry and that’s all the sheets of ice you see on land.

The bigger ice floes in the picture have likely come in from the main arm of the Elbe river.

Screen Shot 2016-01-13 at 06.26.57
Small port on a tiny bay on the Elbe river in Hamburg. Look at the sheets of ice on shore!

It is actually pretty cool to watch the recirculation that goes on in all those small bays (movie below picture). Wouldn’t you assume that they are pretty sheltered from the general flow?

Screen Shot 2016-01-13 at 09.40.53

Submerged hydraulic jump – observing hydrodynamic phenomena in real life

Hydraulic jumps, especially submerged ones, are a very theoretical concept for many students, one that occurs in a lab experiment if they are lucky, but more likely only seems to exists in videos, drawings, and text books. But we can observe them all the time if we know what we are looking for! They don’t only occur in hard-to-see places like the Denmark Strait (for you oceanographers) or inside some big plant, mixing in one chemical or another (for you engineers), they are everywhere!

So. Submerged hydraulic jumps. You don’t think about them for years and years, then one day a friend (Hi, Sindre!) asks about them and the next day you come across this:

IMG_3266
A tiny waterfall in Schleswig

A tiny waterfall that not only shows a beautiful submerged hydraulic jump, but provides extra entertainment in the form of two empty bottles caught up in the return flow above the submerged hydraulic jump:

IMG_3272
Litter caught up in the return flow above a submerged hydraulic jump

You should watch the video, it is really entertaining!

So what is going on here? Below a sketch: Water from the reservoir (A) flows down over a sill. It actually doesn’t flow, but it shoots (B), meaning that it flows faster than waves can propagate. Any wave in the flow that would normally propagate in all directions now cannot propagate upstream any more and is just flushed downstream. At (C), the flow has slowed down enough again that wave speed is the same as flow speed, we are at the hydraulic jump. In this case it is submerged – meaning that it occurs below the water’s surface. We can also think of non-submerged hydraulic jumps – see for example here. But what also happens with submerged hydraulic jumps is that the water jet shooting down the slope is so fast that it entrains water from outside the jet and pulls it down with it. This water has to come from somewhere, so we get a return flow (D). And this is exactly where the bottles are caught: In the flow that goes back towards the jet shooting down the slope.

Schleswig_hydraulic_jump
Sketch of the submerged hydraulic jump. A: reservoir. B: water shooting down the slope. C: hydraulic jump. D: turbulent return flow.

When the bottles come too close to the jet, they get pulled under water and then “jump” because they are too buoyant to actually sink. They might jump away a little from the jet, but as you see in the movie, the return flow reaches out quite a bit from where the jet enters the water, trapping the bottles.

This is actually what makes man-made waterfalls so dangerous: You saw in the movie that the return flow pattern is very similar over the whole width of the “waterfall”. So anything trapped in there will have a really hard time getting out. If either the sill or the slope were a little more irregular, it might break up the symmetry and allow things (and animals or people) to get out more easily. Of course, in this case the drop isn’t very high, but imagine a larger weir. Not fun to get caught in the return flow there!

Talking to my Norwegian friends about these things and especially using movies from my reality to illustrate concepts always makes me want to apologize for how tiny our waterfalls are, how in the middle of a city everything is, how much litter there is everywhere, how regulated even the tiniest streams around here are. But then I realize that it is actually really cool that even in the middle of the city we can spot all this. You don’t need the wide open, pristine nature to get yourself – and your students! – excited about oceanographic phenomena!