On the impact of blogging — or how far does my message mix?

What is the impact of this blog? And who am I writing it for?

Those are not questions I regularly ask myself. The main reason I started blogging was to organise all the interesting stuff I was collecting for my introduction to oceanography lecture at the University of Bergen in one place, so I would be able to find it when I needed it again. And I wanted to share it with friends who were interested in teaching oceanography or teaching themselves.

Another of the reasons why I blog is that I notice a lot of exciting features in everyday life that relate to oceanography and/or physics, that other people would just walk past and not notice, and that I would like to share the wonder of all those things with others. And noticing all this stuff is so much FUN! The blog “gives me permission” to play, to regularly do weekend trips to weirs or ship lifts or other weird landmarks that I would probably not seek out as often otherwise.

But the other day I was browsing the literature on science blogging in order to come up with recommendations for the design of what is to become the Kiel Science Outreach Campus’ (KiSOC) blog. I came across a paper that resonated with me on so many levels: “Science blogs as boundary layers: Creating and understanding new writer and reader interactions through science blogging” by M-C Shanahan (2011). First, I really liked to see the term “boundary layer” in the title, since it brings to mind exciting fluid mechanics. Then second, I read that the boundary phenomena I was thinking of were really where the term “boundary layer” came from even in this context. And then I realised that I have had “boundary layer” experiences with this blog, too!

So what are those boundary layers about? Well, in fluid mechanics, they are the regions within fluids that interact with “something else” — the boundary of a flow, e.g. a pipe, or a second fluid of different properties.  They are a measure for the region over which temperature or salinity or momentum or any other property is influenced by the boundary. But the same construct can be used for social groups, i.e. in my case oceanographers and non-oceanographers. (You should, btw, totally check out the original article! Her example is even more awesome than mine)

But here is my own boundary layer experience: My sister sent me an email with the subject “double-diffusive mixing” and a picture she had taken! My sister is not an oceanographer, and I wasn’t even aware that she associated the term “double-diffusive mixing” with anything in particular other than me writing my Diplom thesis about it and probably talking about a lot. But that she would recognise it? Blew my mind!

Turns out what she saw is actually convection, but it doesn’t look that dissimilar from salt fingers, and how awesome is it that she notices this stuff and thinks of oceanography?

DSC03217
Day 1. The remaining pink soap starts making its way up through the refill of clear soap.

Obviously I asked for follow-up pictures:

DSC03232
Day 2. A lot of the pink soap has reached the top, passing through the clear refill.
DSC03267
Day 3. All of the “old” pink soap is now on its way up through the clear refill.

And I had another boundary layer experience recently: A sailor on the Norwegian research vessel Håkon Mosby with many many years experience at sea had seen my book and told me that he now looks at waves in a new way. How awesome is that? That’s the biggest compliment my book could get, to teach something new about visual observations of the ocean to someone who looks at the ocean every single day!

Anyway. Reading this article made me think about how happy both those boundary layer experiences made me, and that maybe I should actually start aiming at creating more of those. Maybe not with this blog, that I kinda want to keep as my personal brain dump, but there are so many different ways to interact more with people who would potentially be super interested in oceanography if only they knew about it… I guess there is a reason why I am working the job I am :-)


Shanahan, M. (2011). Science blogs as boundary layers: Creating and understanding new writer and reader interactions through science blogging Journalism, 12 (7), 903-919 DOI: 10.1177/1464884911412844

Temperature-driven overturning experiment – the easy way

In my last post, I showed you the legendary overturning experiment. And guess what occurred to me? That there is an even easier way to show the same thing. No gel pads! (BUT! And that is a BIG BUT! Melting of ice cubes in lukewarm water is NOT the process that drives the “real” overturning! For a slightly longer version of this post check this out).

So. Tank full of luke warm water. Red dye on one end. Spoiler alert: This is going to be the “warm” end.

overturning-ice-1Now. Ice cubes on the “cold” end. For convenience, they have been dyed blue so that the cold melt water is easily identifiable as cold.

overturning-ice-2A very easy way to get a nice stratification! And as you see in the video below, awesome internal waves on the interface, too.

overturning-ice-3

And because I know you like a “behind the scenes”:

I took this picture sitting on my sofa. The experiment is set up on the tea table. The white background is a “Janosch” calendar from 15 years ago, clipped to the back of a chair. And that is how it is done! :-)

Screen shot 2015-11-02 at 3.41.24 PM

Granular convection

What is wrong with this picture?

IMG_3103
Random wall somewhere between Mölln and Hamburg

Don’t you guys make your parents stop the car when you drive by newly built walls in random villages somewhere when they are a perfect example of what the Paranuss-Effekt (Brazil nut effect, or granular convection, for all you non-german-speakers) does NOT look like?

For comparison, this is what it SHOULD look like:

2015-10-13 20.25.37
My emergency snacks. Why is it always so hard to get the sunflower seeds out of a jar of mixed nuts?

Yep. Granular convection!

Cloud waves – wave clouds

Another one of those days where I kinda wish I had taken at least some meteorology at some point (only “kind of” because I wouldn’t want to miss any of the stuff I actually took…). But on my way to work I saw the clouds below:

IMG_1821

The internet says they might be cirrocumulus undulatus clouds.

IMG_1829

In any case, the wavy clouds started to disintegrate into cirrocumulus-like clouds.IMG_1822

But whatever they were, they were very pretty!
IMG_1837Meteorologists out there (Torge! :-)) – what kind of clouds were they and why did they form?

 

Lava

Don’t you just love lava lamps?

I got a lot of weird looks when I excitedly told people about two years ago that I had just bought a lava lamp. But what’s not to love about them? Plus they are great for teaching. These days kids don’t know them any more, so they are missing out on a really nice mental image of how convection works. Be it in the Earth’s mantle or in the ocean…

IMG_6106
“Lava” flow.

When I moved into my new flat, for the first week I only had an inflatable air bed and my lava lamp in my living room (oh, and a lot of boxes of course). So I have spent a lot of time looking at how the flow changes over time.

Today, all I want to share is this 9 minute movie of the lava lamp. But I’m working on a post where I’m discussing the temporal development of the flow. Sounds interesting? Stay tuned! :-)