# Spotting both the V-shaped and turbulent wake of a faraway ship on a calm day

The title says it all, I guess ;-)

In the picture above, you can still see the ship on the left, and having seen the ship, I am sure you can recognise the turbulent wake in the picture below, too: It’s the lighter blue stripe towards the horizon with darker, rougher sea surface to either side.

And in the top picture, you see individual “feathers”, i.e. parts of the V-shaped wake with the ship at its tip, coming towards us, whereas in the bottom picture, a little later, the one part of the V has reached us and we see the “feathers” as the wave crests that are more or less perpendicular to the bottom of the picture.

I find it interesting how the perspective makes it seem as if the wavelength gets a lot longer towards us, but that’s really only the perspective. Also the closest two or so crests are really hard to see — can you spot them? The closest one you can see better on the right side of the picture where there is a sudden change from a darker to a lighter part coming across, and the second one you see more easily on the left side, again, with a quick change between darker and lighter. And the third one is fairly easily visible all across the picture.

Do you do wave watching when you are at the water?

# Determining the slope of sea surface via the reflection of a structure

(Disclaimer: The physics the title refers to are somewhere in the second half of the blog post when I am done rambling)

In case you are wondering why I am blogging so much all of a sudden: Sometimes I just love to spend a couple of hours on my sofa, drink something warm, and play with my blog (as I told you I would last Saturday, when I wrote all the stuff that got published recently [technically it’s still said Saturday morning as I am writing this, I am just scheduling all these posts to be published over the next couple of days. I usually select and upload the pictures I want to use on my blog the day I take them, and I always know what I want to write about them, too. In case you were wondering about my blogging process…]). Anyway, moving on.

The pictures for this post were taken a couple of weeks ago, when it was still feasible for me to be at Kiel fjord in the mornings when the sun was this low. Early bird and all, but these days the sunset is too early to just accidentally observe.

What really irritates me is how the condensation trails in the sky look like scratches on the picture. Even though I took the pictures on my phone and then watched them on the phone’s screen (so there is no way they could have gotten scratched somehow) I kept thinking they were scratches. But the pictures are still pretty…

But what the low sun made really easy to observe because of the sharp contrasts between lit and shaded sides of the structure, is how you can actually use the deformation of the structure in the reflection to determine the slope of the water’s surface.

As you know, you can only see the reflection of whatever is exactly in the pathway of the ray from your eye, reflected at the sea surface, and going out at the same angle it came in. Even if you were looking in the same direction all the time, if the slope of the surface changed, what you could see in the very same spot would change, too. Hence if you look at reflections on water, they move and get deformed as waves go past the spot you are looking at…

Above, looking at the white hand rail’s reflection, it becomes very obvious that the wave field is actually quite complex. There are waves that pull the hand rail’s reflection out to the right side, and those that move it up and down in the picture. I find it absolutely fascinating how some parts of the hand rail are visible several times in the reflection, how there are even bits of handrail that seem completely detached from the rest (see the little white dot inside a white loop somewhere in the bottom right?) and how the whole thing still seems so organic and smooth.

Below, you even see how you can see how each wave crest relates to a “spike” in the reflection.

When looking at waves in pictures, it is usually pretty difficult to see which parts of the pictures correspond to which side of the wave, the one facing us or away from us (unless, of course, the waves are breaking, or you see stuff like total internal reflection going on). But the reflections make it a little easier, I think.

And just because staring at the reflections made me feel a little dizzy, here is something to give your eyes a little rest: The view towards the Baltic Sea out of Kiel fjord.

Hope you are all having a nice day full of #wavewatching! :-)

# Same beach, different waves. Why?

Here is a puzzle for you.

Walking along a beach, first, the waves looked like this: One wave breaking at a time.

That’s the situation you also see in the foreground of the picture below, while in the background, a little further down the beach, something else starts happening.

If we look closely at that situation (shown in the picture below), there are several waves breaking at the same time, one behind the other.

And it isn’t just coincidence, it keeps happening throughout hundreds of pictures I took that windy Sunday. Why is that?

I think (and this theory would be easy enough to test if the water was warmer or if I wasn’t such a sissy) that the slope of the beach is just different on either side of this little jetty or whatever it is. The shallower the slope, the earlier waves of the same wavelength can “feel” the sea floor, or the shorter waves have to be to “feel” the sea floor at the same distance from the water line.

So I think the slope on the left of the jetty is shallower than on the right, making the incoming wave field that is the same on either side (I’m assuming, but give me a good reason for why it shouldn’t be?) behave differently.

Funnily enough, the only reason I ended up on that beach was that I wanted to go watch a cruise ship go through the locks and into the Kiel canal with a friend. And, funnily enough, the ship decided to not go through the Kiel canal, as it did the week before. So we decided that we should go to the beach. Very good decision! :-)

But here is a “before” pic from when I was still thinking I would be writing a blog post about the ship going through the locks. Isn’t the seagull hilarious, posing like that?

# Windy days at Holtenau locks: Now THAT’s a turbulent wake!

Now that the weather is nice and sunny again, here is what it looked like only last Saturday. It wasn’t even really stormy, but windy enough so that the ships leaving the locks at Kiel Holtenau were working a lot harder than usual. Especially difficult when you are almost empty and then there is a lot of wind! See that wake?

Right behind the ship you see above, there was a second ship leaving the locks. See how milky the water looks where the first ship went from all the air bubbles that were pushed under water by the ship’s propeller? You can even see some of that water spreading underneath that floating barrier in the foreground!

And see the difference between the waves on the upwind side of the ship and the downwind side?

Here is the picture that my friend sent me that she took from inside of the café that we were sitting in before I HAD to go outside and take pictures. If I am being sent pictures of my back every week by my friends, are they trying to tell me something? :-D

# Early morning Kiel fjord #wavewatching with the help of condensation trails

When it’s all foggy and there are hardly any waves, sometimes help comes from the most unexpected places. Today: condensation trails that are reflected on the water!

Isn’t it interesting to see how depending on the angle of the trails waves show up a lot or hardly at all? The condensation trail on the right really looks like a snake that fell into an ants’ nest, whereas the one on the left is wriggling calmly and composedly.

(I think the assumption that the waves are more or less the same for all trails is fair to make. Don’t you agree?)

# Wake comparisons: Row boat and motor boat

I just love this picture: The two boats in the front are going at the same speed (the trainer is driving right next to the person in the row boat over a long distance), yet look at how different the two ships’ wakes look!

The motor boat has this huge, breaking, turbulent wake. Even though it rides so high up in the water, it displaces a lot of water and creates a wake with a large amplitude (how large the amplitude is is visible in the picture below, where some poor people were sitting in row boats when a motor boat sped past. But also here: Look at how cool these feathery waves that constitute the wake look together!).

But then, going back to the original picture (which I am showing again below) — look in contrast at the row boat’s wake. You see the paired eddies where the oars were in the water, and you see a tiny little trail where the body of the ship went. But that’s all. Yet both boats are going at exactly the same speed! Pretty cool, isn’t it? (Also pretty scary how much energy the motor boat is spending on moving water and moving a larger hull and a heavy engine rather than just propulsion when the payload of both boats is more or less the same — one person)

# Night swimming… or at least night-time wave watching

Looking at Kiel fjord in the picture below, it is quite obvious from the shape of the waves that those waves are some ship’s wake.

Why is that obvious? Because the waves a) have a very short wavelength for their height, and b) are also all of the same wavelength. What I mean by that is a) on Kiel fjord, if we see waves that high that are driven by the wind, their wavelength is a lot longer since the waves have been building up over a long distance. For short waves to display such an amplitude, the waves would have to run up a fairly steep slope which I know is not the case in this location (and which would also lead to two or three high crests in the shallowest part of the water, not to as many as far out as we see here). B) we don’t see a spectrum of wavelengths as we would expect in a wind-driven wave field. In fact, the water surface doesn’t display any ripples or other evidence of wind at all.

And what do you see when you look at water at night? :)

# Intriguing interference pattern of waves

Do you see those weird traces going away from us, perpendicular to the wave crests, but in parallel to the bright stripes on the sea floor (I talked about those in yesterday’s post), looking almost like waves but not quite? What’s going on there?

Something very cool! :-)

In the gif below, I have drawn in several things. First, in red, the “weird” tracks that we are trying to explain. Then, in green, the crests of two different wave fields that are at a slight angle to each other. I’m first showing one, then the other, then both together. Lastly, I am overlaying the red “tracks”.

So this is what those tracks are: They are the regions where one of the wave fields has a crest and the second one has a trough (i.e. where we are right in the middle between two consecutive crests). What’s happening is destructive interference: The wave crest from one field is canceled out exactly by the wave trough of the other field, so the sea level is in its neutral position. And the wave fields move in such a way that the sea level stays in a neutral position along these lines over time, which looks really cool:

Some more pics, just because they are pretty and I like how they also show total internal reflection :-)

And don’t you just love the play of light on the sea floor?

And even though these weird neutral sea level stripes are parallel to the bright stripes on the sea floor, I don’t think that the latter one is caused by the first. Or are they? Wave lengths seem very different to me, but on the other hand what are those stripes on the sea floor if they aren’t related to the neutral stripes in the surface??? Help me out here! :-)

# Wakes by birds, a row boat, and a SUP board

After talking a lot about turbulent wakes this week, here are two pictures of different kinds of wakes. They are of course turbulent, too, but on a very different scale.

In the picture above, see how you see pairs of eddies on either side of the row boat’s wake? That’s where the oars were in the water! But this wake stays visible only for seconds, maybe a minute. Nothing you would be able to see for a long time from afar!

Same for the waves the birds made. Can you still spot that they were swimming in the same direction as the row boat and then made a 180° turn? Maybe you can, maybe you can’t, but that’s how quickly those wakes vanish.

Now below: This is a very interesting wake. Since the SUP board is pretty much flat on the water and doesn’t displace a lot of water while moving through the water, it pretty much only creates the V-shaped wake, not a turbulent one the way a ship does when it’s displacing a large volume of water in order to get forward.

Think I’ve said everything there is to say about waves? Well, then just enjoy this one from the ColorLine ferry that sailed past a couple of minutes ago… How beautiful is this? :-)

# #wakewatching seems to become a thing for me

Usually I look at wakes when ships are long gone, or at least leaving. Today, let’s look at one where the ship is coming towards us and we see how a bow wave turns into the feathery V-shaped wake!

That’s actually all I want to say today. Except look at how well you see where the pilot ship changed course in the picture below! And I love that color. Always makes me happy to see that ship! :-)