## Hetonic explosion

Trying to tweak conditions to force a set number of vortices.

We’ve done the hetonic explosion again. This time the group was super careful to calculate the Rossby radius correctly, and then to set up the experiment accordingly. We aimed for a single column like in our tilting of a frontal surface under rotation experiment.

We did manage to create one main vortex, but we saw at least two additional smaller vortices. And since we know how vortices are created, it is pretty likely that there were four in total.

But never mind, it is still a very nice experiment that we are happy to do over and over again!

Movies will come up once I have time to actually write the posts – we do have numerical simulations that we want to compare our experiments with. Stay tuned!

## Thermally driven circulation

One of my all-time favorite experiments.

The salt group got a bit bored from watching ice cubes melt, so I suggested they look at temperature differences for a change, and they ran the “leaking bottles” experiment.

Watch a movie combining their four different setups below!

## Mixing in a non-stratified and in a stratified tank

A wind stress is applied to the surface to cause mixing.

This is an experiment that I have been wanting to do for a long time, but somehow it never worked out before. But last night Martin and I finally ran it!

We ran two experiments, one after the other.

In the first one, we took a tank full of freshwater, added dye droplets and switched on a hair dryer to force mixing through the wind stress. After about a minute, the tank was fully mixed.

In the second experiment, we created a salt stratification: salt water with approximately 35 psu, and freshwater. We then added the dye droplets. The droplets never penetrated into the salty layer but instead layered in at the interface between the two layers. We then added the wind stress.

After a minute, the surface layer was well mixed, but there was no mixing penetrating into the bottom layer. To fully mix the whole depth, the wind forcing ran for 86 minutes.

Watch a short movie below and a movie containing the full time lapse even further down!

## Waves and sandbanks

Creating waves in a tank. (deutscher Text unten)

In the big tank, we have a paddle that is really good for making big waves. And if you create them in just the right way, they reflect at the back of the tank to meet up with the incoming waves right above the “sandbank” we put in (that’s what the label is you see in the movie below: it says “this is a sandbank”).

Im großen Wellentank können wir mit einem Paddel Wellen erzeugen. Wenn man das genau richtig macht, treffen sich die primären und die reflektierten Wellen direkt über der Sandbank und es spritzt schön. Viel Spaß beim Anschauen des Films!

Cooling and rotation combined. (deutscher Text unten)

I can’t believe I haven’t blogged about this experiment before now! Pierre and I have conducted it a number of times, but somehow the documentation never happened. So here we go today! Martin and I ran the experiment for our own entertainment (oh the peace and quiet in the lab!) while the kids were watching a movie. But now that we’ve worked out some of the things to avoid (for example too much dye!), we’ll show it to them soon.

This is a classical experiment on general atmospheric circulation, well documented for example in the Weather in a Tank lab guide. The movie below shows the whole experiments, though some parts are shown as time lapse.

Für unsere eigene Unterhaltung haben Martin und ich dieses Experiment gemacht, während die Kinder mit allen Gruppen gemeinsam einen Film gesehen haben. Himmlische Ruhe im Labor! Aber wir werden es bald auch der Gruppe vorführen.

Dieses klassische Experiment zeigt, wie die großskalige atmosphärische Zirkulation in der Hadley-Zelle angetrieben wird und ich weiß auch schon, wie wir es beim nächsten Mal noch eindrucksvoller hinbekommen als bei diesem Mal!

## Hetonic explosion

Or, an experiment on this blog often known as “slumping column”. (deutscher Text unten)

If you don’t scale your tilting of frontal surfaces under rotation experiment correctly, you get a phenomenon called “hetonic explosion”: the formation of a cloud of baroclinic point vortices. From the densities, the rotation rate, the dimensions etc you can calculate the Rossby radius and determine how many eddies you will generate. In our case, though, the calculation went wrong by a factor 10 (9.81, to be precise) and what we ended up getting is shown below.

Watch the movie below for the whole experiment (though most of it in time lapse).

Heute haben wir ein sehr spannendes Experiment gemacht. In einem Drehtank hatten wir in der Mitte einen Zylinder mit gefärbten Salzwasser und außen herum klarer Süßwasser ins Gleichgewicht gedreht. Dann wurde der Zylinder entfernt und die Säule blauen Wassers musste ein neues Gleichgewicht finden.

Im Film oben zeigen wir das Experiment – zum Teil allerdings im Zeitraffer. Viel Spaß!

## Forced internal waves in a continuous stratification

Plus all kinds of dyes. (deutscher Text unten)

Using the continuous salinity stratification created yesterday, Rolf and Daniel conducted a really cool experiment: They forced internal waves and watched them develop. I’ve converted their movie into a time-lapse; watch it below.

Mit der kontinuierlichen Salzschichtung, die Daniel und Rolf gestern gebastelt haben, haben sie danach noch weiter experimentiert. Sie haben einen durch einen kleinen Motor angetriebenen Stempel in die Schichtung eingeführt und auf und ab bewegt. Das Wellenfeld, das sich dadurch entwickelt hat, sieht man im Film oben im Zeitraffer (einige kurze Abschnitte zwischendurch zeigen auch Echtzeit). Farbkristalle, die nachträglich hinzugefügt wurden, helfen, die Strömungen zu visualisieren.

## Creating a continuous stratification.

And watching internal waves – a data-model comparison. (deutscher Text unten)

In an experiment similar to the one done by the group looking at the effects of temperature and salinity on density, the wave group, supported by Rolf, started looking at how to create a continuous stratification through internal wave action. Two water masses, one saline and one fresh, were separated in a tank. When the separation was removed, an internal wave developed.

Salinity and tank dimensions were recreated similarly in the tank and in a model, and you can watch the comparison below. Impressive, isn’t it?

Mit der Unterstützung von Rolf hat die Wellengruppe angefangen zu untersuchen, wie eine kontinuierliche Salzschichtung durch Vermischung durch interne Wellen erstellt werden kann. Genau die gleichen Bedingungen wie im Tank (Dimensionen und Salzgehalt) hat Rolf auch in seinem Modell losgelassen und hier ist die Simulation zum Vergleich. Eindrucksvoll wie ähnlich sich die Natur und die Modelllösung sind, oder?

## Effects of temperature and salinity on density and stratification

Removing a barrier between waters of different densities and watching what happens. (deutscher Text unten)

Today, one of the groups performed a classical experiment (shown for example here) – but the awesome thing is that they came up with the planning pretty much by themselves in order to determine the effects of temperature and salinity on density. They compared water of the same temperature, but one fresh and one salty; warm salty vs cold fresh water; and cold salty vs warm fresh water. They predicted the outcome correctly, and we are showing two movies below: One normal movie and one in slow motion. Enjoy!

Heute hat eine Gruppe ein klassisches Experiment reproduziert. Allerdings haben sie es quasi selbstständig entwickelt.

Um den Effekt von Temperatur und Salzgehalt auf die Dichte zu bestimmen, werden zwei Wassermassen in einen Tank gefüllt, durch ein Wehr getrennt. Das Wehr wird herausgezogen und die dichtere Wassermasse schichtet sich unter die weniger dichte. Die Gruppe hat drei Fälle verglichen: Wasser gleicher Temperatur mit und ohne Salz; warmes salziges Wasser mit kaltem süßen; und warmes süßes Wasser mit kaltem salzigen. Der Film unten zeigt eine Zeitlupe der Bewegung.

:-)