A touristy post about my trip to Heligoland

I recently went on a trip to Heligoland, Germany’s only island that is far away from the mainland (70 km in this case). It was a great trip, and I know you’ll be reading about it for some weeks to come :-)

Today, we’ll just do the touristy parts, though, and get into the oceanography later.

The trip started out super awesome. I went on a ferry and got the chance to see ships being greeted by Wilkomm Höft, the Ship Welcome Station, by dipping the Hamburg flag and playing the national anthem. I’ve seen this before, but only from land (this is a place that I love going to for birthdays, mine and other people’s). Sitting on a ship and being bid farewell this way is really touching! I loved it and got a little teary-eyed.

2016-04-27 09.41.47
Being bid farewell (by dipping the Hamburg flag and playing music) at Wilkomm Höft in Wedel on the Elbe river.

The ferry itself is a high speed catamaran, which, as you might have guessed, produces an amazing wake.

Wake of the Halunder Jet, the high-speed ferry going from Hamburg to Heligoland.

Unfortunately, the ship is set up such that the rescue boats obscure the view of the wake a little. How inconsiderate ;-) Please ignore the outboard engine…

On Heligoland itself, there are the famous red cliffs, and tons of birds. Let me just show you a few:


The best-known part of Heligoland is the Lange Anna — a red rock called “long Anna”. You see it on the picture below. What I liked most about it — besides the beauty of the rock and the birds, obviously — was the wave breaker build there to protect the coast, and what it did to the waves.

“Lange Anna”, the famous red rock on Heligoland in the German Bight

Zooming in on the wave breaker’s edge, there is clearly very strong winds coming around that corner:


To be fair, it was a super windy day.

They also have a very nice beach on Heligoland, where you can see the bending of waves due to changes in topography that we talked about before.


And if you look over to the second island, you can very nicely compare and contrast the upwind and downwind coasts of islands:

See how there are lots of breaking waves (well, you probably only see the foam) on the upwind coast of the island in the back of the image, and how there are absolutely no waves in the lee of the sea wall in the foreground of that picture?


Btw, the downwind side of that same second island looks also a lot calmer as it is sheltered by the island itself:


Unfortunately, I couldn’t take a picture of the whole island at once, I really need to upgrade my camera… But can you spot the rainbow above?

Also there is some more, pretty spectacular weather to be seen:


If you go over to the other island, there are TONS of seals. Like several hundred, right on the beach! Obviously, I only have pictures of seals when there are also nice waves happening at the same time :-)


Oh, and birds.


And more seals! This one is cute, I have to admit…


Oh, and I was lucky (lucky means bold enough to ask!) enough to hitch a ride on the local research vessel, Aade. Below, they just finish a plankton trawl. We weren’t allowed out on deck because the weather was so rough…


What looks like a calm and serene morning really wasn’t one. It was super windy and wavy! Good thing I don’t get sea sick.


It turns out it’s super difficult to take pictures of waves that look as impressive as the waves are in reality. I really need to learn how to do that! But even if you don’t see the size of the waves, at least you get a different look at “lange Anna” below.


And these are white caps on the “open” sea, not waves breaking on a shore.


And for a nice comparison: The Aade (the research vessel I was on) and the catamaran that took me home later that night.


Anyway, it was a great trip!

The difference between secondary rainbows and double rainbows

More reflection or more rain?

Ha, aren’t you enjoying talking about optics again?

Sometimes you see two rainbows that both have red on the outside and blue on the inside. And according to my post on secondary rainbows, that should not be the case. Yet is has been observed. Why?

Screen shot 2015-06-07 at 8.09.47 PM
Rainbow and secondary rainbow, seen at Heathrow Airport. Picture by my friend F.

As you remember, secondary rainbows form outside the primary rainbows because the light is reflected twice inside the raindrop rather than only once as in the case of a primary rainbow. But that second rainbow with red on the outer rim and blue on the inner is formed differently.

Until now we’ve assumed that all the rainbows appear on the same rain front. This is not the case for the rainbow we are talking about here – it is formed on a second rain front behind the first one. So the path of light within rain drops of both rainbows on both fronts is similar, with light being only reflected once for each rainbow.

When you google double rainbows, you sometimes find pictures of two rainbows, both with red on the outer rim, nicely separated from each other. And when you see those pictures, you can be pretty sure that they’ve been photoshopped. Double rainbows of the kind we are talking about here overlap, and usually you see one full rainbow with all its colors, and then a slightly smaller rainbow with only green, blue and purple peeking out:

Screen shot 2014-07-13 at 3.34.19 PM
If you look closely, there is a green-and-purple band on the inside of the complete rainbow. Double rainbow!

Sun dogs

Recently spotted: sun dogs, a special form of halo! Or rather sun dog (singular), since there was only one to be seen and not a second one at equal distance from the sun but on its opposite side.

Sun dog spotted somewhere between Mölln and Hamburg

These pictures are exactly as my camera took them without any filters or color enhancement or anything. Isn’t it weird that we appeared to be the only car stopping every couple of minutes to watch while everybody just continued driving?

Sun dog spotted somewhere between Mölln and Hamburg

Rainbows and prisms

Screen shot 2015-06-07 at 8.51.25 PM

Lets go back and talk about one of my favorite non-oceanographic topics: Rainbows!

When I had my rainbow phase about a year ago, my mom sent me the movie below, which shows what you see when you look directly into the prism that paints these kinds of rainbows all over my parents’ living room:

Screen shot 2015-06-07 at 8.51.25 PM
Rainbow from glass prism

When you look directly into the prism, you don’t see a rainbow like the one projected on the wall, but you see one color at a time. Only as the prism moves you experience all the different colors of the rainbow. And that is interesting because in a rainbow you see all colors at once, yet here you don’t. This is going to go into the next version of my rainbow movie, but for now check out my mom’s:

My renewed interest in rainbows was sparked one Saturday where I saw one on my way to the swimming pool in the morning.

Screen shot 2015-06-07 at 8.09.00 PM

And then a double rainbow on an evening walk with a friend.

Screen shot 2015-06-07 at 8.09.30 PM

And then another friend, F., sent me the picture below which he had taken at Heathrow and which he kindly allowed me to use for educational purposes on my blog.Screen shot 2015-06-07 at 8.09.47 PM

Are you as exited as I am that we are finally getting back into rainbows? :-)

What are the ingredients of a rainbow?

Still collecting materials for our instructional short movies.

A while back I talked about how my colleague and I were experimenting with short instructional screen casts, and I shared some first attempts at movies on how rainbows form. We are still working on a story board for an improved version, but I was lucky enough to see a very pretty rainbow in a fountain the other day.

The picture below is a good demonstration of how rainbows form where there are water droplets in the air (provided there is enough sunlight, too, and we are watching from the right position) – we still see a bit of the rainbow to the right of the fountain, even though the wind direction has changed and the fountain is now blown to the left, visible because of the mist and the lower part of rainbow.

Fascinated as I was I had to film clips of this, too, which are combined in the movie below. There you see the rainbow appearing and disappearing, depending on where the fountain is moved by the wind, i.e. whether it is moved to the part of the sky where all the angles are right for us to see a rainbow, or not.

It was a magical moment – enjoy! :-)

Why do we only see rainbows in the mornings and evenings, but never at noon?

Another movie on rainbows

My dearest readers, I hope you are still as fascinated by rainbows as I am? Today I’m giving you another movie explaining something rainbow-related, namely why we do not see rainbows when the sun is too high up in the sky. The video is stylistically similar to the ones I did before, and while practice really helps and I am getting pretty fast in making this kind of videos now, I am ready to try something new. But using doceri is something that I could imagine doing operationally if I was to use this kind of movies in my courses. It is really a nice tool!

So here is my movie. As always, let me know how you like it and what I could do better!

P.S.: Whenever I say or write 82, what I mean is 84! But according to my colleague it is actually beneficial to learning if movies aren’t perfect, because hesitation or small mistakes create irritations in the learner, which then make him think about what you were saying. And as the learner is now engaging more actively, the learning process is more successful. So there you go! :-)

Rainbows III

Updated movie following Arne’s advice.

When I asked for feedback on the rainbow movies the other day, Arne had a pretty good idea for how one of the explanations could be made more intuitive. I have other people’s comments still in the queue and I’m working on them, this is still very much in the trial & error phase… And unfortunately it’s in german, which I didn’t realize until I had uploaded it.

But please do keep the comments coming, I will include them eventually!

Secondary rainbows

Sometimes you get lucky and see a double rainbow. But how does the second rainbow form?

On my first 17th of May in Bergen, Ellen invited me to her home for a traditional dinner, which was exceptional. And as a bonus we got to see a double rainbow over Store Lungårdsvann!

Screen shot 2014-07-11 at 6.16.13 PM
Double rainbow in Bergen on May 17th 2011

The outer rainbow is the so-called secondary rainbow, and as you can see the colors in the secondary rainbow are reversed, with red being on the inside and blue being on the outside.

Having watched my explanations in the textbook-style movie or in the short movie collection, is the sketch below enough information for you to make sense of how a secondary rainbow forms?

If the sketch isn’t clear – what additional information would you need to make sense of the sketch?

Here comes the movie in case you’d like to watch it:

I have yet a newer version of the rainbow movies as well as the one pictured above ready for you, but I thought I’d give you a bit of a break from rainbows and talk about something else for a while. But we’ll be back to rainbows soon, promise!

Rainbows and refraction II

Taking the same graphics as in this post, but presenting them differently.

In the previous post, I presented a screen cast explaining, in a very text-booky way, how rainbows form. Today, I am using the same graphics, but I have broken the movie into six individual snippets.

I’m starting out from the schematic that concluded last post’s movie and ask  five questions that you could ask yourself to check whether you understand the schematic:

Ideally I want to link the other five of the movies into the one above, but I haven’t figured out how to do that yet, so here you go for the answers:

What do you think of this way of presenting the material? Do you like it better than the textbook-y movie? I’m curious to hear your opinions!

For both this and the other way of displaying the material, I am toying with the idea of adding quizzes throughout the movies, in a programmed learning kind of way. But considering all the pros and cons, I haven’t made a final decision on it yet. What do you think?

Rainbows and refraction

Why is a rainbow always red on top and blue at the bottom?

We always talk about prisms and refraction and stuff, but be honest – would you be able to explain the order of colors in a rainbow without pausing and thinking first?

Screen shot 2014-07-13 at 3.34.19 PM
Rainbow. Picture taken in Laufenselden in 1996

As I said the other day, I am currently experimenting with screen casts. This is my very first attempt – I didn’t write a script so it is pretty chaotic, I have a cold (which you can hear from my voice), my handwriting sucks, the movie is, at 4 minutes, about twice as long as I wanted it to be – it is not perfect and I will certainly modify it before using it in teaching. But I would be very interested in your feedback so I can improve it!

As you noticed, this is a very textbook-y screen cast. I’ll present an alternative model for the same topic in my next post.

P.S.: As you might have noticed from the watermarks in the video, I have continued experimenting with screen cast programs and am currently using Doceri. And I am very happy with it!