Dictionary oceanography terms English-Norwegian-German – Work in progress: we need you!

For anyone interested: a couple of years ago we started working on a collection of translations of oceanography terms in English, Norwegian and German. If you find it useful, please feel free to use and share it!

Oceanography terms: English – Norwegian – German

This dictionary is definitely a work in progress. If you find typos, better translations, if you are missing terms – give me a shout and I am happy to fix it. If you think this is super useful and would like to help develop it further (or just add to it whenever you just looked up a new term anyway and want to write it down somewhere you won’t lose it): I’d love to have you on board! Let me know and I’ll give you editing permissions on the document.

Also if you are a meteorologist, paleontologist, climate scientist or someone from any other related discipline and want to expand the scope to include your speciality, or if you want to add a new language – you are very welcome to join us!

Thanks to Eli, Sindre and Kjetil for helping me getting this started!

Oceanographic concepts and language, reloaded

How we might misunderstand our students and therefore diagnose misconceptions where there are none.

Imagine you are in an Earth Sciences class and your teacher talks about glaciers and how they are “retreating”. They probably also show you pictures comparing a very old photograph from, say, 1900, with a current photo of the same glacier. What you see is that where used to be ice, ice and nothing but ice, now there is likely only a little left somewhere up high on a mountain, and that the whole plain in the foreground that used to be covered in ice is now bare rock. I’m sure we’ve all sat in that class at some point.

Now consider the everyday usage of the term “retreat”: When we talk about a retreat, we talk about movement away from a place or situation especially because it is dangerous, unpleasant, etc.. So what a student who hasn’t thought about glaciers much before associates, is the poor glacier crawling back up the mountain to safety.

This is a pretty easy misunderstanding to clear up. If you think about it, there is no mechanism that would drive enormous amounts of ice up a mountain, and the other explanation, that the backward melting at the front of the glacier is faster than the forward motion of the glacier itself, is a lot more plausible.

This was one of the examples I used to set the scene for my recent talk at FIE in Madrid. Our paper on “misalignment of everyday and technical language” is basically a summary of my earlier posts on this blog on oceanography and language (see below), where we talk about a couple of cases where everyday and technical language are misaligned, and to what kind of problems that can lead.

But there are other misunderstandings that are a lot more persistent and harder to even diagnose. I recently read the paper “”Force”, ontology, and language” by Brookes and Etkina (2009). I found it a really difficult read, but a very worthwhile one.

What I’m taking away from it:

When physicists talk about force, they typically do so in a very short-hand kind of way. As they talk among themselves, this is not a problem because the meaning of the shorthand has been negotiated and even though people might not be aware that they are talking in metaphores, everybody is aware of the underlying meaning of what is being said.

The authors now span the space of physicists’ language along two axes: role and location. This leads to four quadrants in which they can place recorded physicists’ language about forces (see figure below):

  1. active & internal: Force is an internal desire or drive. Example: “the moon is attracted to the Earth”.
  2. active & external: Force is an agent. Example: “The force acts on an object”.
  3. passive & external: Force is a passive medium of interaction. Example: “A applies force to B
  4. passive & internal: Force is a property of an object. Example: “the tension in a rope”
Brooks2009
My rendition of Brookes & Etkina (2009)’s Figure 1: The dimensions of physicists’ language about force.

Looking at those examples (and there are more in the paper, so go read the original rather than my take on it!) it is clear that in the way we speak about force, we do assign properties, at least by the way we are using language about it, if not intentionally.

The authors come up with a model of language in physics and do a very careful analysis of what this means for different case studies, but the very compelling message that I am taking away from this is:

What we might conceive as misconceptions on the student’s part might very well be just a miscommunication because, taking all the grammatical clues I am giving through my language, the student understands what I am saying differently from what I think I am saying. Being aware of this might help us answer the questions the students are asking, rather than the ones we are hearing. Which, in turn, will make it easier for them to understand what we think we are saying. So let as close with a quote of the final two sentences of the paper: “If learning physics involves learning to represent physics, then learning physics must involve a refinement of terminology and cases in language. And part of the teacher’s role in the classroom must be to support that learning process—something that we, as teachers, are often unaware of.”

Oceanographic concepts and language (part 4)

On how it always helps to speak the same mother tongue as your teacher.

As you might have realized from previous discussion on the topic of oceanography and language (part 1, 2, and 3), I have been thinking a lot about how me teaching in a foreign language to both me and most of my students affects my teaching, our interactions and their learning. I thought I was very aware of the difficulties that arise due to the second (or third or fourth) language issue, and that that awareness was helping me deal with it in a good way.

Recently though, I was supervising students writing the exam for the course I had taught. I was walking around, talking to individual students, and a german student asked me a question to clarify what I wanted them to do. Specifically, the student repeated the question back to me in German and asked me to confirm that their understanding was correct, which it was. And that was when I realized that even though I have always been teaching in English, and always tried to respond to students in one-on-one situations in whichever language they approached me in, german students really have an advantage in my class.

Similarly, when correcting exams, I understand the false friends that german students might use, or their weird choice of words. And while I always try to separate language problems from problems with the oceanographic concepts, I might not be doing such a good job for students whose languages I am not familiar with. Actually, not “I might not be doing such a good job” – there is no way I would do a good job if I was not familiar with the language and the false friends or weird sayings or typical mistakes that come with that language.

I don’t know how to resolve this. I don’t even know whether it is possible. I am sure that the effect is small in my courses and grades because I am aware and actively trying to make sure this isn’t unfairly helping or hindering students. But this is the first time that I think of being back in a primarily german-speaking environment as an advantage – at least I am not introducing unfair circumstances due to different languages.

What do you guys think? Have you come across these problems? How did you deal with them?

Oceanographic concepts and language (part 3)

What level of proficiency do you need to communicate about science?

This post is not strictly about oceanography, but I started thinking about it in the context of a class I taught recently, where I was teaching in a foreign language to me and most of the students.

After one of the classes, a student came to me to thank me that had I continued explaining concepts, even though some of the (native speaker) students thought that that was ridiculous and everybody should know what certain terms meant (posted about here).

And one thing this student and I noted when discussing in a language that was foreign to both of us was that even though our grammar might be not perfect and our vocabulary not as large as that of native speakers, we had a sensitivity for other speakers that many of the native speakers lacked. For example, we discovered that it comes natural to us to speak about “football” to speakers of British English, when we would say “soccer” to speakers of American English. Or that we are aware that trousers and pants might or might not mean the same thing, depending on who you are talking to. And I remember distinctly how on a British ship, sitting at a table with American scientists, I explained that when the stewart asked if we wanted “pudding” we could well end up getting cake, because in the context then what he meant was “dessert”.

When you are a non-native speaker, you get used to listening very carefully in order to understand what is going on around you. In my first months in Norway, for example, I happily watched Swedish TV and would understand as much there as on Norwegian TV. I would recognize words, grammar rules that had been discussed in language class, even phrases. Yet many of my Norwegian friends say they find it hard to understand Swedish.  But on the other hand I remember that I found it much easier to communicate in English when in Vienna than to adapt to their German dialect.

Sports-analogies are another example that is typically very language-dependent. I know by now what “pitching an idea” means, but not because I know pitching from a sports context, but because I have heard that phrase used often enough so it stuck. Same for this teaching assistant who helped with my class who I overheard shouting “mud pit!” when he wanted students to remember something about molecular diffusion (or heat?) – the picture I made up in my head is that of players huddling together in a muddy playing field, but I still don’t know what exactly he was referring to (and I’m sure neither do half of the students of that class).

Now, I am not saying that native speakers of any language are necessarily unaware of those peculiarities. But what I am saying is this: If you are a native speaker, and you are communicating with non-native speakers, try to be aware of how you are communicating your ideas, and be sensitive to whether you are understood. And listen carefully to what your students are saying and don’t just assume that non-native speakers can’t possibly have anything interesting to say. And if you are the teacher who taught the class before I taught the class with the student mentioned above, and you told them that their English was not good enough because they didn’t speak (note: not because they didn’t understand, but because they didn’t speak!) your dialect: Learn their language, or any kind of foreign-to-you language, and then we can talk again.

And on this slightly rant-y note, I’ll leave you for now. I will be back in the new year on Mondays, Wednesdays and Fridays. I have tons of ideas for more posts (you have no idea how many experiments my family will have to endure over the next couple of days! And I have about 30 hands-on experiment posts in various draft stages written already), and if you end up desperately waiting for new content here, how about you try some of my (or other) experiments and let me know how it went? Have fun playing!

Oceanographic concepts and language (part 2)

How to make lectures in a foreign language less scary for the students.

The class that I have until recently taught in Bergen, GEOF130, is taken by students in oceanography and meteorology in the second year of their Bachelor at the university. It is the first course they take at the Geophysical Institute – their first year is spent entirely at other institutes. The Bachelor is taught in Norwegian – with the exception of GEOF130. This course is taught in English, because it also serves the Nordic Master, which is taught in English, and that brings in many students who don’t speak Norwegian.

While I am glad the course had to be held in Norwegian (I would definitely not have had the time to prepare 4 hours of lectures per week for a whole semester in Norwegian!), many of the students were not happy. They typically understand everything you say just fine, but there is a huge barrier when it comes to speaking in front of their peers in a foreign language.

The easiest way to cope with the shyness I found is to speak to them in my less-than-perfect Norwegian. Seeing the teacher make funny mistakes in a foreign language makes it a lot easier for them to dare making mistakes in another foreign language.

Yet students often choose to write the exam in Norwegian (and yes – I have to pose the questions in English, Nynorsk and Bokmål!). Which often leads to problems, since all of the lectures and all of the reading materials were in English, so the students don’t actually know any of the technical terms in Norwegian and often end up inventing them or, worse, mixing them up with similar sounding but not otherwise related Norwegian terms.

So the next thing to do is to always try and be aware of which terms they are likely to know and which are technical terms. This is not always easy and depends a lot on what their native language is (see this post). One thing I did early on when I started teaching was to create a small dictionary of oceanographic terms in English, Norwegian and German. Anyone out there who wants to help edit that dictionary? And everybody, please feel free to share if you think this might be useful to someone else!

Oceanographic concepts and language (part 1)

About teaching in a language that is a foreign language for both your students and yourself.

Most of my teaching so far has happened in English to mainly non-native English speakers with the occasional native speaker thrown in. One thing that I realized recently was that concepts that are definitely not common knowledge at home in Germany and that are described by technical terms in German, are absolute household terms in other language.

Let’s for example think about density.

In German, or Norwegian for that matter, “Dichte” or “tetthet” is not a concept that is used in everyday language very much, and that therefore needs to be explained in introductions to oceanography, and that typically is rather difficult to understand for the students. I usually introduce density both by talking about mass per volume, and then by showing experiments to visualize what differences in density can look like, for example by showing that soda cans with the exact same volume can still sink or swim depending on what’s inside.

In English however, people have an intuitive understanding of what density is – a measure of compactness. A densely populated area is an area where many people live close together. If a lecture is very dense, there is a lot of content for the amount of time you attend. A low-density floppy disk will not be able to contain as much information as a high-density one. So having this background, not a lot of transfer is needed to be able to talk about the density of water.

I am usually pretty aware that I am teaching in a language that is foreign to both the students and to me, and I try to compensate for that by explaining what I perceive as technical terms. But recently I had a native English speaker in one of my classes, and that person got really upset because I spent so much time on what that person thought was trivial. So I guess language awareness needs to go both ways – not only being aware of what kind of vocabulary students of certain nationalities probably won’t be familiar with, but also being aware of the vocabulary that I learned as technical terms and that are not perceived as technical terms by students of other nationalities.

Dear readers, have you come across this? What other terms can you think of that we should be aware of?