Tag Archives: Kiel fjord

Where has all the water gone?

You might have noticed that in today’s first post there was a lot less water in the Kiel fjord than in yesterday’s post (starting this year strong on the blogging front! I like it! And don’t worry, I won’t be keeping up this pace :-D). But look how little water there actually is!

In the picture above you see two navigation signs that are usually necessary there, because the rock in the middle is submerged far below the water surface. But not today!

And also in these locations you would typically see water coming all the way to the sea wall and sometimes even higher than that. So what happened? Strooong winds!

And the even more interesting thing will happen in a day or so, when the winds die down and all the water that got pushed out into the Baltic Sea comes rushing back into Kiel Fjord! Unfortunately I will most likely not be able to document it due to travel. Someone should pay me for documenting important oceanographic events in Kiel Fjord all day every day :-)

Ferry sailed past, wake perpendicular to wind. Cool interference pattern!

Guess the title says it all today ;-)

Just kidding. Below you see a movie of a neat interference pattern I observed this morning. The situation is similar to yesterday in that the ferry has sailed past and the wake runs up on those bathing steps. But: today it’s quite windy and the wind waves’ crests are perpendicular to the crests of the ferry’s wake. Check it out:

That’s the kind of stuff I loooove watching! Happy New Year, everybody, may there be plenty of wave watching in 2019!

P.S.: Am I the only one who always wants to write fairy when writing about ferries? :-D

When the ferry has long sailed past and the waves start appearing out of the fog…

Ending 2018 in style and exactly the way I want to continue in 2019: wave watching and dipping into Kiel fjord!

2018 has been an exciting year and a lot of changes that will shape 2019 to be very different from anything I have ever done before have already been set in motion. But despite all the new adventures, some things will stay the same: Stay tuned for ever more adventures in oceanography and teaching that I look forward to bringing to you!

Happy and healthy 2019!

The first autumn storm and its impact on dye tracer and water level

Last night it rained a lot. So the first thing to do this morning was to check what that had done to my green lake!

The dye is now a lot more diluted, but overall it still looks surprisingly green seeing that there is a lot of rain water draining into the lake. To give you an idea of how much more water is going through now than when I last showed pictures of the green stream: Look at how clearly you see the inflow into the lake in the picture above! And remember the little waterfall in the picture below? There is a lot more flow now.

Another thing that has gotten a lot easier to see now is where the dye goes into the Kiel fjord. Because the flow rate is a lot higher, so the flow itself is clearly visible, independent of the tracer, but also because … well, there isn’t a lot of water left in Kiel fjord!

This is what it looks like this morning: That little stream is water from the lake going into the fjord. Usually there is about a meter more water here!

It looks actually pretty cool to see exactly what the sea floor looks like.

Even though there are no tides in the Baltic (well, hardly any), we do have some large changes in water levels sometimes. They are due to changes in wind or pressure; in this case there was a lot of wind last night that pushed a lot of water out of the Kiel fjord into the Baltic.

What typically happens now is that this water doesn’t stay away indefinitely, but once the winds stop, forms a “seiche”, a standing wave, with a period of a little more than a day.

Of course I am going to check if there is water back by tonight, and then gone again tomorrow morning! Assuming, of course, that the winds stay calm. Otherwise that would influence where the water goes, too.

What I found really interesting, too, is that I saw a lot of herons now that I’ve hardly ever seen in this part of Kiel fjord before. It makes sense — usually there is too much water so they have nowhere to stand — but it was still weird to see five at once, and more as I walked along the fjord.

And — at last! — it was possible to see from land what those two sticks in the water are warning about: The stone in the middle! I had never actually seen that before. Now I know! And now the water can come back; wave watching is more fun when the waves have slightly shorter periods than the seiche’s 27 hours… ;-)

…Update in the afternoon…

After more rain throughout the day, we now actually see a clear plume of the rain water going through the green lake, with a little mixing on the sides as the green water is entrained!

And some water is back in Kiel fjord. Phew. So there is wave watching to be done right away:

Below, we see a really nice example of waves changing their direction as they run into shallow water, since their phase velocity depends on water depth (more about that here).

Wave watching as official part of the program of a conference on chemistry and physics education!

Yes, you read that correctly.

The German Society for Chemistry and Physics Education (GDCP)’s annual conference started out with a 2 hour cruise on Kiel fjord, during which the participants had the opportunity to choose between enjoying the sunshine and just doing whatever they liked, and several “guided tours” on either the sights of Kiel in general, or the biggest sight in Kiel, the water :-)

Preparation is everything: charts to learn to observe waves

I had prepared laminated charts to be used in case for some reason the weather wasn’t cooperating, and they definitely came in handy even during beautiful sunshine. On those charts, I used pictures that you’ve seen on this blog before, and contrasted them with typical physics text book illustrations, either sketches or ripple tank photos.

Since I was fairly busy talking, I only snapped two pictures:

The Oslo ferry right after turning inside the Kiel fjord, right when it starts backing up towards its berth, and, more interestingly, the turbulent wake. See how messed up the wave field is? It’ll take quite a while for all that turbulence to dissipate and for the sea surface to look as if nothing ever happened there!

And then our ferry’s wake. Here we see the turbulent propeller wake and one side of the feathery wavelets of the V formed by the wake.

Beautiful day to be on a ship!

Now, if you’d like to do a guided wave watching tour, you know where to find me… ;-)

Wave watching at the Kiel Holtenau locks

So many people are surprised when I speak of wave watching as of a “real activity”. But to me it is! So I am going to talk you through a couple of minutes I spent looking out on the water where the Kiel Canal meets the Kiel fjord, right outside the locks at Kiel Holtenau.

A light breeze across the fjord

The “light breeze” part is fairly easy to observe: There are ripples on the water, but no actual waves. “Across the fjord” is also fairly obvious if you look at either side of the wave breaker: On the fjord side, there are ripples, on the shore side, there are none (or hardly any), indicating that the wave breaker is sheltering the shore-side from the wind (and dampening out the waves that come across the fjord).

And then: A ship sails into view!

We watch the ship sail past, dreaming of foreign countries and exciting adventures.

A ship leaving a wake

Behind the ship, the water looks very different from what it looks like everywhere else. The wake is turbulent and waves radiate outwards like a V, with the ship always at its tip.

Then, the ship is gone. But we can still see where it went.

There are no waves in the tubulent wake

The ship’s path is completely smooth. No waves have invaded the turbulent waters of the wave just yet, claimed them back. However, the waves the ship created in that V are about to reach the wave breaker.

Also the wind has picked up a little, as evident from the less smooth water surface shore-ward of the wave breakers.

Diffraction at a slit

Right after the waves from the V reach the wave breaker, they reach the opening at the end between the pylons. And what happens now is that the waves get diffracted at a “slit”: they propagate outwards as semi circles, even though the wave fronts were straight when they reached the slit.

How awesome is that? And all of this happening in a matter of minutes!

The weather changes

I said earlier that there was hardly any wind. Later that afternoon, it still wasn’t very windy, but the wind direction had changed: now the smooth and sheltered part has moved to the other side of the wave breakers. There are a lot more waves on the shore side of the wave breaker now, the ones with crests parallel to the wave breaker due to it moving, and the ones with crests perpendicular to it generated by wind. And you see gusts of wind on the sea side of the wave breakers in the different surface roughness.

So if you were wondering, too: That’s the kind of stuff I look at when I am wave watching. And I still find it super fascinating and relaxing at the same time! :-)

Expedition learning

Last week, we ran an “expedition learning” course for 17-year olds. They were separated into several groups, working on different topics, and mine (unsurprisingly) worked on waves. You can see here what kind of stuff we observed when first testing the stretch of coastline we wanted to do our expedition to. And now you’ll get a picture dump of the actual expedition.

We started out in not-so-ideal-but-really-not-too-bad-either kind of weather, as you can read off the tracks below: It had been raining a little, but not very hard, and it had stopped by the time we got there.

img_0317

The drift lines looked quite promising.

img_0322

My group dove right into it (only figuratively, luckily, not literally). However I wasn’t quite sure if this guy knew what he was getting into?

img_0332

At this point we were still very close to the car, so I thought that it might be quite smart strategically to let them figure out here how high the waders go and what happens if the waves are higher than the waders… And the wakes of two ships  meeting up at a headland are a very good place to learn about that kind of things!

img_0337

This headland is a very good place to start observing waves in any case. Especially at the typical wind direction found here. Because then, looking back from the light house to the land, you see a large area that is sheltered where waves only build up gradually. Which is a very nice contrast to the waves arriving upwind and makes it very easy to observe differences.

img_0340

And then if you look downwind from the headland, you see waves sneaking around the headland from both sides. Those coming from the right are from the fully developed wave field that has been growing all the way down Kiel fjord, and then those coming in from the left are the ones that only started growing downwind of the little barrier shown in the picture above.

img_0341

Can you see it? Maybe easier on a panorama kind of picture?

screen-shot-2017-07-15-at-06-53-41

Of course we always like to look at the ring waves that appear when other waves hit stones…

img_0357

I didn’t foresee that wave watching would happen mostly from within the water, but the guys in my group made a good case for walking on the sand bank to actually measure the wave hight depending on the water depth (rather than just observing and estimating from dry land, as I would have done), but why not?

img_0359

Luckily, they found the shallowest part of the sand bank in exactly the same spot I would have told them to look for it based on the wave field ;-)

img_0372

Btw, a nice example of coastal dynamics right below. We had a coastal dynamics group, too, but I don’t even know if they looked at this kind of stuff, I mainly saw them taking soil samples.

img_0361

img_0387

And I know I made the same observation in the same spot last time, too, but I think it’s fascinating how the different directions of the ripples and drift lines and waves all come together.

img_0396

In any case, a nice day at the beach!

img_0385

Well, most of the time anyway.

img_0401

Luckily, we found shelter!

2017-07-11-13-12-02

Those, btw, are Annika and Jeannine, who were working with a different group on coastal vegetation.

2017-07-11-13-11-42

But: New and interesting pattern on the beach once the rain was done!

img_0407

The kids spent the next two days putting all their observations on maps and preparing a presentation, and I am really happy with how it turned out. Of course there is some room for improvement still, but how boring would it be if there wasn’t? ;-) All in all I think it was a pretty successful course!