#scipoem on an Darelius et al. article about ice shelves

“Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water”*

Let’s talk ab’t a favourite paper
“Observed vulnerability of Filchner-
Ronne Ice Shelf to
wind-driven inflow
of wa(-a-a-a-a)rm deep water”

An ice shelf is ice that is floating
on top of the sea as it’s flowing
down from a continent
this one is prominent
more ar’onl’ the Ross Shelf is coating.

In oc’nographers’ jargon, “deep water”
(as we learned by heart at my alma mater)
are defined by their propertie’
and live in the deep, deep sea
and currently they are getting hotter.

But “warm” is a relative measure
bathing in it would be no pleasure
it’s temperature typically
less than just one degree!
Go measure yourself at your leisure!

As winds weaken now during summer
warm water, like led by a plumber,
climbs up the continent
and can now circumvent
sills and reach ice from under.

If temperatures rise as projected
a lot of the ice will be ‘ffected.
Raising the lev’l o’ sea,
changing hydrography,
which needs to be further dissected.

Because of its climatic impact
which Elin has now shown to be fact
we need close observation
of deep water formation
so all changes can carefully be tracked.

*that’s the title of an article by (Elin) Darelius et al. (2016) which served as inspiration for this poem.

Tale of arctic melting and deep water formation #scipoem

IMG_6798 copy

Tale of arctic melting and deep water formation

Freshwater freezes long before saltwater does,
and it also floats on top of saltwater.
In the Nordic Seas, deep waters are formed.
If there is a lot of freshwater,
less deep water can be formed.
The sea freezes over.
Ice then insulates,
prevents heat flux,
shutting down
ocean’s
pump.

But
this is
too simple.
Influencing
fresh water layers
are also the currents.
East of Greenland, to name one,
flows fast the East Greenland Current,
taking away all the freshwater
through the Denmark Strait south, and further south,
where the freshwater mixes with saltwater
until anomalies return decades later,
starting the circle again. Now what if Greenland melts?*

*I don’t actually have an answer to the question what will happen if there is a large input of freshwater into the Nordic Seas (which seems unavoidable under global warming when both Arctic sea ice and Greenland glaciers melt). My own research, interpreting measurements taken in the region between 1950 and 2000, shows that during that period the fresh meltwater got transported south, out of the Nordic Seas, as suggested in the poem (Glessmer, Eldevik, Våge, Nilsen, & Behrens, 2014). However, even the newest of those measurements are almost a decade old now, and the debate among experts about what will happen is wide open. Exciting times!

A #scipoem on upwelling of tropical OMZ waters in a warmer climate

“Simulated reduction in upwelling of tropical oxygen minimum waters in a warmer climate”*

Let’s pick apart this article’s title,
inaccessible to most people out there.
Even though we know it as vital
to communicate clearly, be able to share,
what goes on in iv’ry towers detrital,
to whom it is relevant, as well as where.
Since taxpayers pay for us, science and all,
we need to inform them without any brawl.

“Sim’lated” just means a model predicts.
“Warmer climate”, then, is scientists’ code
for “some time in the future”, but nothing fix.
Which means if we continue down this road
of putting more CO2 in the mix
“upwelling”, whatever that is, will be slowed.
“Upwelling” means that waters from the deep
up to the surface of the ocean creep.

“Tropical” means “going on in the tropic’”.
“Oxygen minimum waters” contain
low levels of oxygen, which are a topic
of discussion in the science domain,
because if levels sink down to “hypoxic”,
almost no life in the sea can remain.
Fate of dead animals and plants, in the end,
does on the oxygen levels depend.

Dependent on oxygen, chemicals form,
that can change climate as does CO2,
if they reach the atmosphere in a storm
or just by “upwelling”, out of the blue,
they make that further the climate will warm.
Therefore, it’s nice to know that the brew
of “oxygen minimum waters” will leach
more slowly to continents’ western beach’.

screen-shot-2017-08-28-at-11-38-36

*This poem is in the “Ottava Rima” form and it explains the title of an article by Glessmer, Park & Oschlies (2011). The title of this article was also chosen as title to this poem.

Double the trouble — a poem about double-diffusive mixing in the ocean

On my blog’s fourth Birthday (!!!), it’s time to try something new. How about some celebratory oceanographic poetry? Obviously the topic has to be my oceanic pet process, double-diffusive mixing

 

Double the trouble

Heat mixes by molecules bumping
into each other and clunking
momentum transfers
so fast it all blurs
the warmer the faster they’r’all jumping

A different story for salts
where ions — through not their own faults!
must change their location
which leads to palpation
resembling a fairly slow waltz

Now heat and salt mix simultaneous
-ly without ‘ny extra extraneous
stirring or shaking
fish swimming, waves breaking,
which leads to effects miscellaneous

The ones I like best are salt finger:
structures that form and then linger,
tricking unsuspicious
oc’nographers vicious
-ly into assuming not threat to the thinker

This process includ’d in simulations
leads to much better foundations
of climate prediction
that is my conviction
you can read here* about the causations

Not only the currents o’the ocean
that consequently change their motion
but also biology
chemistry, geology
and last, not least, atmospheric transpos’tion

To sum up, this double diffusion,
those fingers that are no illusion
when climate has changed
the ocean’s been deranged
def’nitly deserve an inclusion :-)

 

 

Happy Birthday, my little blog! :-)

IMG_9084

*Glessmer, M. S., Oschlies, A., & Yool, A. (2008). Simulated impact of double‐diffusive mixing on physical and biogeochemical upper ocean properties. Journal of Geophysical Research: Oceans113(C8).